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a b s t r a c t 

We consider smooth stochastic convex optimization problems in the context of algorithms which are 

based on directional derivatives of the objective function. This context can be considered as an interme- 

diate one between derivative-free optimization and gradient-based optimization. We assume that at any 

given point and for any given direction, a stochastic approximation for the directional derivative of the 

objective function at this point and in this direction is available with some additive noise. The noise is 

assumed to be of an unknown nature, but bounded in the absolute value. We underline that we con- 

sider directional derivatives in any direction, as opposed to coordinate descent methods which use only 

derivatives in coordinate directions. For this setting, we propose a non-accelerated and an accelerated 

directional derivative method and provide their complexity bounds. Our non-accelerated algorithm has 

a complexity bound which is similar to the gradient-based algorithm, that is, without any dimension- 

dependent factor. Our accelerated algorithm has a complexity bound which coincides with the complexity 

bound of the accelerated gradient-based algorithm up to a factor of square root of the problem dimen- 

sion. We extend these results to strongly convex problems. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Zero-order or derivative-free optimization considers problems

f minimization of a function using only, possibly noisy, observa-

ions of its values. This area of optimization has a long history,

tarting as early as in 1960 ( Rosenbrock, 1960 ; Fabian, 1967 ), see

lso ( Brent, 1973 ; Spall, 2003 ; Conn, Scheinberg, and Vicente,

009 ). Even an older area of optimization, which started in 19th

entury Cauchy (1847) , considers first-order methods which use

he information about the gradient of the objective function. In

his paper, we choose an intermediate class of problems. Namely,

e assume that at any given point and for any given direction,

 noisy stochastic approximation for the directional derivative of

he objective function at this point in this direction is available.
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e underline that we consider directional derivatives in any

irection, as opposed to coordinate descent methods which rely

nly on derivatives in coordinate directions. We refer to the class

f optimization methods, which use directional derivatives of the

bjective function, as directional derivative methods . Unlike well

eveloped areas of derivative-free and first-order stochastic opti-

ization methods, the area of directional derivative optimization

ethods for stochastic optimization problems is not sufficiently

overed in the literature. This class of optimization methods can

e motivated by at least three situations. 

The first one is connected to Automatic Differentiation Wengert

1964) . Assume that the objective function is given as a computer

rogram, which performs elementary arithmetic operations and el-

mentary functions evaluations. Automatic Differentiation allows

o calculate the gradient of this objective function and the addi-

ional computational cost is no more than five times larger than

he cost of the evaluation of the objective value. The drawback of

his approach is that it requires to store in memory the result of

ll the intermediate operations, which can require large memory
nikov, An accelerated directional derivative method for smooth 

ch, https://doi.org/10.1016/j.ejor.2020.08.027 

https://doi.org/10.1016/j.ejor.2020.08.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
mailto:pavel.dvurechensky@wias-berlin.de
mailto:eduard.gorbunov@phystech.edu
mailto:gasnikov@yandex.ru
https://doi.org/10.1016/j.ejor.2020.08.027
https://doi.org/10.1016/j.ejor.2020.08.027


2 P. Dvurechensky, E. Gorbunov and A. Gasnikov / European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; September 4, 2020;11:53 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

a  

m  

F  

n

 

a  

t  

a  

O  

T  

a

 

w  

s

1

 

t  

f  

o  

i  

c  

a  

w  

t

i

1

 

S  

p  

t  

b  

p  

w  

O  

m  

d  

a  

e

 

s  

s  

p  

p  

e  

w  

s  

l  

&  

S  

o  

p  

D  

a  

a  

s  

a  

r  

t  

c  

m

amount. On the contrary, calculation of the directional derivative

is easier than the calculation of the full gradient and requires the

same memory amount as the calculation of the value of the objec-

tive Kim, Nesterov, Skokov, and Cherkasskii (1984) . Since a random

vector can be a part of the program input or some randomness

can be used during the program execution, stochastic optimization

problems can also be considered. 

Importantly, automatic calculation of the directional derivative

does not require the objective function to be smooth. This fact mo-

tivates the study of directional derivative methods in connection to

Deep Learning. Indeed, learning problem is often stated as a prob-

lem of minimization of a loss function. A non-smooth activation

function, called rectifier, is frequently used in Deep Learning as a

building block for the loss function. Formally speaking, this non-

smoothness does not allow to use Automatic Differentiation in the

form of backpropagation to calculate the gradient of the objective

function. At the same time, directional derivatives can be calcu-

lated by properly modified backpropagation. 

The second motivating situation is connected to quasi-

variational inequalities, which are used in modelling of differ-

ent phenomena, such as sandpile formation and growth Prigozhin

(1996) , determination of lakes and river networks Barrett and

Prigozhin (2014) , and superconductivity Barrett and Prigozhin

(2010) . It happens that directional derivatives can be calculated

for such problems Mordukhovich and Outrata (2007) as a solution

to some auxiliary problem. Since this subproblem can not always

be solved exactly, the noise in the directional derivative naturally

arises. If the considered physical phenomenon takes place in some

random media, stochastic optimization can be a natural approach

to use. 

The third motivating situation is connected to derivative-free

stochastic optimization. In this situation a gradient approximation,

based on the difference of stochastic approximations for the val-

ues of the objective in two close points, can be considered as a

noisy directional derivative in the direction given by the difference

of these two points Dvurechensky, Gasnikov, and Tiurin (2017) . In

this case, derivative-free stochastic optimization can be considered

as a particular case of directional derivative stochastic optimiza-

tion. 

Motivated by potential presence of non-stochastic noise in the

problem, we assume that the noise in the directional derivative

consists of two parts. Similar to stochastic optimization problems,

the first part is of a stochastic nature. On the opposite, the second

part is an additive noise of an unknown nature, but bounded in

the absolute value. More precisely, we consider the following opti-

mization problem 

min 

x ∈ R n 

{ 

f (x ) := E ξ [ F (x, ξ )] = 

∫ 
X 

F (x, ξ ) dP (x ) 
} 

, (1)

where ξ is a random vector with probability distribution P ( ξ ),

ξ ∈ X , and for P -almost every ξ ∈ X , the function F ( x , ξ ) is closed

and convex. Moreover, we assume that, for P almost every ξ ,

the function F ( x , ξ ) has gradient g ( x , ξ ), which is L ( ξ )-Lipschitz

continuous with respect to the Euclidean norm and there exists

L 2 ≥ 0 such that 
√ 

E ξ L (ξ ) 2 � L 2 < + ∞ . Under this assumptions,

E ξ g(x, ξ ) = ∇ f (x ) and f has L 2 -Lipschitz continuous gradient with

respect to the Euclidean norm. Also we assume that 

E ξ [ ‖ g(x, ξ ) − ∇ f (x ) ‖ 

2 
2 ] � σ 2 , (2)

where ‖ · ‖ 2 is the Euclidean norm. 

Finally, we assume that an optimization procedure, given a

point x ∈ R 

n , direction e ∈ S 2 (1) and ξ independently drawn from

P , can obtain a noisy stochastic approximation 

˜ f ′ (x, ξ , e ) for the

directional derivative 〈 g ( x , ξ ), e 〉 : ˜ f ′ (x, ξ , e ) = 〈 g(x, ξ ) , e 〉 + ζ (x, ξ , e ) + η(x, ξ , e ) , 

E ξ (ζ (x, ξ , e )) 2 � �ζ , ∀ x ∈ R 

n , ∀ e ∈ S 2 (1) , 
Please cite this article as: P. Dvurechensky, E. Gorbunov and A. Gas
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| η(x, ξ , e ) | � �η, ∀ x ∈ R 

n , ∀ e ∈ S 2 (1) , a.s. in ξ , (3)

here S 2 (1) is the Euclidean sphere or radius one with the center

t the point zero and the values �ζ , �η are controlled and can be

ade as small as it is desired. Note that we use the smoothness of

 ( · , ξ ) to write the directional derivative as 〈 g ( x , ξ ), e 〉 , but we do

ot assume that the whole stochastic gradient g ( x , ξ ) is available. 

It is well-known ( Lan, 2012 ; Devolder, 2011 ; Dvurechensky

nd Gasnikov, 2016 ; Gasnikov and Dvurechensky, 2016 ) that, if

he stochastic approximation g ( x , ξ ) for the gradient of f is

vailable, an accelerated gradient method has complexity bound

 

(
max 

{ √ 

L 2 /ε , σ
2 /ε 2 

} )
, where ε is the target optimization error.

he question, to which we give a positive answer in this paper, is

s follows. 

Is it possible to solve a smooth stochastic optimization problem

ith the same ε-dependence in the complexity and only noisy ob-

ervations of the directional derivative? 

.1. Related work 

We first consider the related work on directional derivative op-

imization methods and, then, a closely related class of derivative-

ree methods with two-point feedback, the latter meaning that an

ptimization method uses two function value evaluations on each

teration. Since all the considered methods are randomized, we

ompare oracle complexity bounds in terms of expectation, that is,

 number of directional derivatives or function values evaluations

hich is sufficient to achieve an error ε in the expected optimiza-

ion error E f ( ̂  x ) − f ∗, where ˆ x is the output of an algorithm and f ∗

s the optimal value of f . 

.1.1. Directional derivative methods 

Deterministic smooth optimization problems . In Nesterov and

pokoiny (2017) , the authors consider the Euclidean case and

ropose a non-accelerated and an accelerated directional deriva-

ive method for smooth convex problems with complexity

ounds O ( nL 2 / ε) and O (n 
√ 

L 2 /ε ) respectively. Also they pro-

ose a non-accelerated and an accelerated method for problems

ith μ-strongly convex objective and prove complexity bounds

 ( nL 2 / μlog 2 (1/ ε)) and O (n 
√ 

L 2 /μ log 2 (1 /ε)) respectively. For a

ore general case of problems with additional bounded noise in

irectional derivatives, but also for the Euclidean case, an acceler-

ted directional derivative method was proposed in Dvurechensky

t al. (2017) and a bound O (n 
√ 

L 2 /ε ) was proved. 

We also should mention coordinate descent methods. In the

eminal paper Nesterov (2012) , a random coordinate descent for

mooth convex and μ-strongly convex optimization problems were

roposed and O ( L / ε) and O ( L / μlog 2 (1/ ε)) complexity bounds were

roved, where L is an effective Lipschitz constant of the gradi-

nt varying from n to some average over coordinates coordinate-

ise Lipschitz constant. In the same paper, an accelerated ver-

ion of random coordinate descent was proposed for convex prob-

ems and O (n 
√ 

L/ε ) complexity bound was proved. Papers ( Fercoq

 Richtárik, 2015; Lee & Sidford, 2013; Lin, Lu, & Xiao, 2014;

halev-Shwartz & Zhang, 2014 ) generalize accelerated random co-

rdinate descent for different settings, including μ-strongly convex

roblems, and ( Allen-Zhu, Qu, Richtarik, & Yuan, 2016; Gasnikov,

vurechensky, & Usmanova, 2016a; Nesterov & Stich, 2017 ) provide

 O ( 
√ 

L/ε ) and O ( 
√ 

L/μ log 2 (1 /ε)) complexity bounds, where L is

n effective Lipschitz constant of the gradient varying from n to

ome average over coordinates coordinate-wise Lipschitz constant,

nd, in the best case, is dimension-independent. An accelerated

andom coordinate descent with inexact coordinate-wise deriva-

ives was proposed in Dvurechensky et al. (2017) with O (n 
√ 

L/ε )
omplexity bound and also a unified view on directional derivative

ethods, coordinate descent and derivative-free methods. 
nikov, An accelerated directional derivative method for smooth 

ch, https://doi.org/10.1016/j.ejor.2020.08.027 
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d  
Stochastic optimization problems. A directional derivative method

or non-smooth stochastic convex optimization problems was in-

roduced in Nesterov and Spokoiny (2017) with a complexity

ound O ( n 2 / ε2 ). A random coordinate descent method for non-

mooth stochastic convex and μ- strongly convex optimization

roblems were introduced in Dang and Lan (2015) with complexity

ounds O ( n / ε2 ) and O ( n / με) respectively. 

.1.2. Derivative-free methods 

Deterministic smooth optimization problems. A non-accelerated

nd an accelerated derivative-free method for this type of prob-

ems were proposed in Nesterov and Spokoiny (2017) for the Eu-

lidean case with the bounds O ( nL 2 / ε) and O (n 
√ 

L 2 /ε ) respec-

ively. The same paper proposed a non-accelerated and an accel-

rated method for μ-strongly convex problems with complexity

ounds O ( nL 2 / μlog 2 (1/ ε)) and O (n 
√ 

L 2 /μ log 2 (1 /ε)) respectively.

 non-accelerated derivative-free method for deterministic prob-

ems with additional bounded noise in function values was pro-

osed in Bogolubsky et al. (2016) together with O ( nL 2 / ε) bound

nd application to learning parameter of a parametric PageRank

odel, see also ( Gasnikov, Gasnikova, Dvurechensky, Mohammed,

nd Chernousova, 2017a ; Gasnikov et al., 2018 ). Deterministic prob-

ems with additional bounded noise in function values were also

onsidered in Dvurechensky et al. (2017) , where several accel-

rated derivative-free methods, including Derivative-Free Block- 

oordinate Descent, were proposed and a bound O (n 
√ 

L/ε ) was

roved, where L depends on the method and, in some sense, char-

cterizes the average over blocks of coordinates Lipschitz constant

f the derivative in the block. Mixed first-order/zero-order setting

s considered in Beznosikov, Gorbunov, and Gasnikov (2020a) . Af-

er our paper appeared as a preprint, the papers Berahas, Byrd, and

ocedal (2019a) ; Bollapragada and Wild (2019) studied derivative-

ree quasi-Newton methods for problems with noisy function val-

es, and the paper Berahas, Cao, Choromanski, and Scheinberg

2019b) reported theoretical and empirical comparison of different

radient approximations for zero-order methods. 

Stochastic optimization problems. Most of the authors in this

roup solve a more general problem of bandit convex optimiza-

ion and obtain bounds on the so-called regret. It is well known

esa-bianchi, Conconi, and Gentile (2002) that a bound on the

egret can be converted to a bound on the expected optimiza-

ion error. Non-smooth stochastic optimization problems were

onsidered in Nesterov and Spokoiny (2017) , where an O ( n 2 / ε2 )

omplexity bound was proved for a derivative-free method. This

ound was improved by ( Duchi, Jordan, Wainwright, and Wibisono,

015 ; Gasnikov, Lagunovskaya, Usmanova, and Fedorenko, 2016b ;

asnikov, Krymova, Lagunovskaya, Usmanova, and Fedorenko,

017b ; Shamir, 2017 ; Bayandina, Gasnikov, and Lagunovskaya,

018b ; Hu, L.A., Gyrgy, and Szepesvari, 2016 ) to 1 ˜ O (n 2 /q R 2 p /ε 
2 ) ,

here p ∈ {1, 2}, 1 
p + 

1 
q = 1 and R p is the radius of the feasi-

le set in the p -norm ‖ · ‖ p . For non-smooth μp -strongly convex

.r.t. to p -norm problems, the authors of Bayandina et al. (2018b) ;

asnikov et al. (2017b) proved a bound 

˜ O (n 2 /q / (μp ε)) . A version of

hese methods for non-smooth saddle-point problems is developed

n Beznosikov, Sadiev, and Gasnikov (2020b) . 

Intermediate, partially smooth problems with a restrictive as-

umption of boundedness of E ‖ g(x, ξ ) ‖ 2 , were considered in

uchi et al. (2015) , where it was proved that a proper modifica-

ion of Mirror Descent algorithm with derivative-free approxima-

ion of the gradient gives a bound O (n 2 /q R 2 p /ε 
2 ) for convex prob-

ems, improving upon the bound 

˜ O (n 2 /ε 2 ) of Agarwal, Dekel, and

iao (2010) . For strongly convex w.r.t 2-norm problems, the au-

hors of Agarwal et al. (2010) obtained a bound 

˜ O (n 2 /ε) , which
1 ˜ O hides polylogarithmic factors (ln n ) c , c > 0. b

Please cite this article as: P. Dvurechensky, E. Gorbunov and A. Gas
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as later extended for μp -strongly convex problems and improved

o ˜ O (n 2 /q / (μp ε)) in Gasnikov et al. (2017b) . 

In the fully smooth case, without the assumption that

 ‖ g(x, ξ ) ‖ 2 < + ∞ , papers Ghadimi and Lan (2013) ; Ghadimi, Lan,

nd Zhang (2016) proposed a derivative-free algorithm for the Eu-

lidean case with the bound 

˜ 

 

(
max 

{
nL 2 R 2 

ε 
, 

nσ 2 

ε 2 

})
. 

n Gorbunov, Dvurechensky, and Gasnikov (2018) , the authors pro-

osed a non-accelerated and an accelerated derivative-free method

ith the bounds 

˜ 

 

( 

max 

{ 

n 
2 
q L 2 R 

2 
p 

ε 
, 

n 
2 
q σ 2 R 2 p 

ε 2 

} ) 

, ˜ O 

( 

max 

{ 

n 
1 
2 + 1 q 

√ 

L 2 R 
2 
p 

ε 
, 

n 
2 
q σ 2 R 2 p 

ε 2 

} ) 

espectively, where R p characterizes the distance in p -norm be-

ween the starting point of the algorithm and a solution to (1) ,

 ∈ {1, 2} and q ∈ {2, ∞ } is the conjugate to p , given by the identity
1 
p + 

1 
q = 1 . 

The authors of Chen, Orvieto, and Lucchi (2020) combine ac-

elerated derivative-free optimization with accelerated variance re-

uction technique for finite-sum convex problems in the Euclidean

etup. 

Other works. For a recent review of derivative-free optimiza-

ion see Larson, Menickelly, and Wild (2019) and for a review of

tochastic optimization, including derivative-free optimization, see 

owell (2019) . 

.2. Our contributions 

As we have seen above, only two results on directional deriva-

ive methods for non-smooth stochastic convex optimization are

vailable in the literature, and, to the best of our knowledge,

othing is known about directional derivative methods for smooth

tochastic convex optimization, even in the well-developed area of

andom coordinate descent methods. Our main contribution con-

ists in closing this gap in the theory of directional derivative

ethods for stochastic optimization and considering even more

eneral setting with additional noise of an unknown nature in the

irectional derivative. 

Our methods are based on two proximal setups Ben-Tal and Ne-

irovski (2015) characterized by the value 2 p ∈ {1, 2} and its con-

ugate q ∈ {2, ∞ }, given by the identity 1 
p + 

1 
q = 1 . The case p = 1

orresponds to the choice of 1-norm in R 

n and corresponding

rox-function which is strongly convex with respect to this norm

we provide the details below). The case p = 2 corresponds to the

hoice of the Euclidean 2-norm in R 

n and squared Euclidean norm

s the prox-function. As our main contribution, we propose an Ac-

elerated Randomized Directional Derivative (ARDD) algorithm for

mooth stochastic optimization based on noisy observations of di-

ectional derivative of the objective. Our method has the complex-

ty bound 

˜ 

 

( 

max 

{ 

n 

1 
2 + 1 q 

√ 

L 2 R 

2 
p 

ε 
, 

n 

2 
q σ 2 R 

2 
p 

ε 2 

} ) 

, (4) 

here R p characterizes the distance in p -norm between the start-

ng point of the algorithm and a solution to (1) . 

As our second contribution, we propose a non-accelerated Ran-

omized Directional Derivative (RDD) algorithm with the complex-
2 Strictly speaking, we are able to consider all the intermediate cases p ∈ [1, 2], 

ut we are not aware of any proximal setup which is compatible with p �∈ {1, 2} 

nikov, An accelerated directional derivative method for smooth 

ch, https://doi.org/10.1016/j.ejor.2020.08.027 
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ity bound 

˜ O 

( 

max 

{ 

n 

2 
q L 2 R 

2 
p 

ε 
, 

n 

2 
q σ 2 R 

2 
p 

ε 2 

} ) 

. (5)

Interestingly, for this method when p = 1 and q = ∞ , we obtain

complexity bound which depends on the dimension n only loga-

rithmically despite we use only noisy directional derivative obser-

vations. Let us comment on the comparison between the acceler-

ated and non-accelerated method. In the regime of small variance

σ 2 in both bounds the dominating term is the first one. If p =
1 , q = ∞ and L 2 R 

2 
p < nε, then the bound for the non-accelerated

method is smaller than that of for the accelerated. In this regime

it is preferred to use the non-accelerated method. 

Note that, in the case of (1) having a sparse solution, our

bounds for p = 1 allow to gain a factor of 
√ 

n in the complex-

ity of the accelerated method and a factor of n in the com-

plexity of the non-accelerated method in comparison to the Eu-

clidean case p = 2 . Indeed, sparsity of a solution x ∗ means that

‖ x ∗‖ 1 = O (1) · ‖ x ∗‖ 2 and, if the starting point is zero, we obtain

R 2 
1 

= ‖ x ∗‖ 2 
1 

= O (1) · ‖ x ∗‖ 2 
2 

= O (1) R 2 
2 
. Hence, the bounds for p = 1

and p = 2 can be compared only based on the corresponding pow-

ers of n , the latter being smaller for the case p = 1 , q = ∞ . 

We underline here that our methods are based on random di-

rections drawn from the uniform distribution on the unit Euclidean

sphere and our results for p = 1 can not be obtained by random

coordinate descent. 

As our third contribution, we extend the above results to the

case when the objective function is additionally known to be μp -

strongly convex w.r.t. p -norm. For this case, we propose an accel-

erated and a non-accelerated algorithm which respectively have

complexity bounds 

˜ O 

(
max 

{
n 

1 
2 + 1 q 

√ 

L 2 
μp 

log 2 
μp R 

2 
p 

ε 
, 

n 

2 
q σ 2 

μp ε 

})
, 

˜ O 

(
max 

{
n 

2 
q L 2 
μp 

log 2 
μp R 

2 
p 

ε 
, 

n 

2 
q σ 2 

μp ε 

})
. (6)

In the regime of small variance σ 2 in both bounds the dominating

term is the first one. If p = 1 , q = ∞ and 

L 2 
μp 

< n, then the bound

for the non-accelerated method is smaller than that of for the ac-

celerated. In this regime of relatively well-conditioned problems it

is preferred to use the non-accelerated method. 

As our final contribution, we consider derivative-free smooth

stochastic convex optimization with inexact values of the stochas-

tic approximations for the function values as a particular case

of optimization using noisy directional derivatives. This allows us

to obtain the complexity bounds of Gorbunov et al. (2018) as a

straightforward corollary of our results in this paper. At the same

time we obtain new complexity bounds for the strongly convex

case which, to the best of our knowledge, were not known in the

literature. 

Note that our results for accelerated and non-accelerated meth-

ods are somewhat similar to the finite-sum minimization problems

of the form 

min 

x ∈ R n 

m ∑ 

i =1 

f i (x ) , 

where f i are convex smooth functions. For such problems acceler-

ated methods have complexity ˜ O (m + 

√ 

mL/ε ) and non-accelerated

methods have complexity ˜ O (m + L/ε) (see, e.g. Allen-Zhu, 2017 for

a nice review on the topic). As we see, acceleration allows to take

the square root of the second term but for the price of 
√ 

m and

the two bounds can not be directly compared without additional

assumptions on the value of m ε. 
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Special note on ( Gorbunov et al., 2018 ; Vorontsova, Gasnikov,

orbunov, and Dvurechenskii, 2019 ). One of the novelties and in-

ights in the approach of this paper in comparison to ( Gorbunov

t al., 2018 ; Vorontsova et al., 2019 ) is to realize that gradient-

ree methods are a particular case of directional derivative meth-

ds with inexact oracle. Unlike these papers, in the current paper

e need to account for two types of inexactness. One is stochas-

ic with bounded second moment and the second is bounded a.s.

his is a more complicated assumption than the one in ( Gorbunov

t al., 2018 ; Vorontsova et al., 2019 ) and we have to assume that

he error values can be controlled, unlike ( Gorbunov et al., 2018 ;

orontsova et al., 2019 ). Moreover, since the oracle returns differ-

nt information, we have to construct our stochastic approximation

f the gradient differently, which also changes the proof technique.

e also analyze in this paper the case of strongly convex objective

alues, which was not done in ( Gorbunov et al., 2018 ; Vorontsova

t al., 2019 ). 

.3. Paper organization 

The rest of the paper is organized as follows. In Section 2 , both

or convex and strongly convex problems, we introduce our algo-

ithms, state their convergence rate theorems and corresponding

omplexity bounds. Section 3 is devoted to proof of the conver-

ence rate theorem for our accelerated method and convex objec-

ive functions. Section 4 is devoted to proof of the convergence

ate theorem for our non-accelerated method and convex objec-

ive functions. In Section 5 we provide the proofs for the case of

trongly convex objective function. Finally, in Section 6 we pro-

ide numerical experiments with two types of objective functions:

orst case functions for first-order methods Nesterov (2004) and

east squares problem. 

. Algorithms and main results 

In this section, we provide our non-accelerated and accelerated

irectional derivative methods both for convex and strongly convex

roblems together with convergence theorems and corresponding

omplexity bounds. The proofs are rather technical and postponed

o next sections. 

.1. Preliminaries 

We start by introducing necessary objects and technical results.

Proximal setup. Let p ∈ [1, 2] and ‖ x ‖ p be the p -norm in R 

n

efined as 

 x ‖ 

p 
p = 

n ∑ 

i =1 

| x i | p , x ∈ R 

n , 

 · ‖ q be its dual, defined by ‖ g‖ q = max 
x 

{〈 g, x 〉 , ‖ x ‖ p ≤ 1 
}
, where

 ∈ [2, ∞ ] is the conjugate number to p , given by 1 
p + 

1 
q = 1 , and,

or q = ∞ , by definition ‖ x ‖ ∞ 

= max 
i =1 , ... ,n 

| x i | . 
We choose a prox-function d ( x ) which is continuous, convex

n R 

n and is 1-strongly convex on R 

n with respect to ‖ · ‖ p , i.e.,

or any x, y ∈ R 

n d(y ) − d(x ) − 〈∇d(x ) , y − x 〉 ≥ 1 
2 ‖ y − x ‖ 2 p . With-

ut loss of generality, we assume that min 

x ∈ R n 
d(x ) = 0 . We define

lso the corresponding Bregman divergence V [ z](x ) = d(x ) − d(z) −
∇d(z) , x − z〉 , x, z ∈ R 

n . Note that, by the strong convexity of d , 

 [ z](x ) ≥ 1 

2 

‖ x − z‖ 

2 
p , x, z ∈ R 

n . (7)

or the case p = 1 , we choose the following prox-function Ben-Tal

nd Nemirovski (2015) 

(x ) = 

e n 

(κ−1)(2 −κ) /κ ln n ‖ x ‖ 

2 
κ , κ = 1 + 

1 

(8)

2 ln n 
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nd, for the case p = 2 , we choose the prox-function to be the

quared Euclidean norm 

(x ) = 

1 

2 

‖ x ‖ 

2 
2 . (9)

ain technical lemma. In our proofs of complexity bounds, we rely

n the following lemma. The proof is rather technical and is pro-

ided in the appendix. 

emma 1. Let e ∈ RS 2 (1), i.e be a random vector uniformly distributed

n the surface of the unit Euclidean sphere in R 

n , p ∈ [1, 2] and q

e given by 1 
p + 

1 
q = 1 . Then, for n ≥ 8 and ρn = min { q − 1 , 16 ln n −

 } n 2 q −1 
, 

 e ‖ e ‖ 

2 
q ≤ ρn , (10)

 e 

(〈 s, e 〉 2 ‖ e ‖ 

2 
q 

)
≤ 6 ρn 

n 

‖ s ‖ 

2 
2 , ∀ s ∈ R 

n . (11)

Stochastic approximation of the gradient. Based on the noisy

tochastic observations (3) of the directional derivative, we form

he following stochastic approximation of ∇f ( x ) 

˜ 

 

m f (x ) = 

1 

m 

m ∑ 

i =1 

˜ f ′ (x, ξi , e ) e, (12)

here e ∈ RS 2 (1), ξ i , i = 1 , . . . , m are independent realizations of ξ ,

 is the batch size . 

.2. Algorithms and main results for convex problems 

Our Accelerated Randomized Directional Derivative (ARDD)

ethod is listed as Algorithm 1 . 

lgorithm 1 Accelerated Randomized Directional Derivative

ARDD) method. 

nput: x 0 —starting point; N � 1 — number of iterations; m � 1 —

batch size. 

utput: point y N . 

1: y 0 ← x 0 , z 0 ← x 0 . 

2: for k = 0 , . . . , N − 1 . do 

3: αk +1 ← 

k +2 
96 n 2 ρn L 2 

, τk ← 

1 
48 αk +1 n 

2 ρn L 2 
= 

2 
k +2 

. 

4: Generate e k +1 ∈ RS 2 (1) independently from previous itera-

tions and ξi , i = 1 , . . . , m – independent realizations of ξ . 

5: Calculate 

˜ ∇ 

m f (x k +1 ) = 

1 

m 

m ∑ 

i =1 

˜ f ′ (x k +1 , ξi , e ) e. 

6: x k +1 ← τk z k + (1 − τk ) y k . 

7: y k +1 ← x k +1 − 1 
2 L 2 ̃

 ∇ 

m f (x k +1 ) . 

8: z k +1 ← arg min 

z∈ R n 

{
αk +1 n 

〈˜ ∇ 

m f (x k +1 ) , z − z k 
〉
+ V [ z k ] ( z ) 

}
. 

9: end for 

10: return y N 

heorem 1. Let ARDD method be applied to solve problem (1) . Then 

 [ f (y N )] − f (x ∗) � 

384�p n 
2 ρn L 2 

N 

2 
+ 

4 N 

nL 2 
· σ 2 

m 

+ 

61 N 

24 L 2 
�ζ + 

122 N 

3 L 2 
�2 

η

+ 

12 
√ 

2 n �p 

N 

2 

( √ 

�ζ

2 
+ 2�η

) 

+ 

N 

2 

12 nρn L 2 

( √ 

�ζ

2 
+ 2�η

) 2 

, 

(13) 

here �p = V [ z 0 ](x ∗) is defined by the chosen proximal setup and

 [ ·] = E e 1 , ... ,e N ,ξ1 , 1 , ... ,ξN,m 
[ ·] . 
Please cite this article as: P. Dvurechensky, E. Gorbunov and A. Gas
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Before we proceed to the non-accelerated method, we give the

ppropriate choice of the ARDD method parameters N , m , and ac-

uracy of the directional derivative evaluation �ζ , �η . These val-

es are chosen such that the r.h.s. of (13) is smaller than ε. For

implicity we omit numerical constants and summarize the ob-

ained values of the algorithm parameters in Table 1 below. The

ast row represents the total number Nm of oracle calls, that is, the

umber of directional derivative evaluations, which was advertised

n (4) . Note that the bound (13) allows also to choose the accuracy

f the directional derivative evaluation �ζ , �η decreasing with N .

his is done by making each term with �ζ or �η in the r.h.s. to

e of the same order as the first term. 

Our Randomized Directional Derivative (RDD) method is listed

s Algorithm 2 . 

lgorithm 2 Randomized Directional Derivative (RDD) method. 

nput: x 0 —starting point; N � 1 — number of iterations; m � 1 —

batch size. 

utput: point x̄ N . 

1: for k = 0 , . . . , N − 1 . do 

2: α ← 

1 
48 nρn L 2 

. 

3: Generate e k +1 ∈ RS 2 ( 1 ) independently from previous itera-

tions and ξi , i = 1 , . . . , m – independent realizations of ξ . 

4: Calculate ˜ ∇ 

m f (x k ) = 

1 

m 

m ∑ 

i =1 

˜ f ′ (x k , ξi , e ) e. 

5: x k +1 ← arg min 

x ∈ R n 

{
αn 

〈˜ ∇ 

m f (x k ) , x − x k 
〉
+ V [ x k ] ( x ) 

}
. 

6: end for 

7: return x̄ N ← 

1 
N 

N−1 ∑ 

k =0 

x k 

heorem 2. Let RDD method be applied to solve problem (1) . Then 

 [ f ( ̄x N )] − f (x ∗) � 

384 nρn L 2 �p 

N 

+ 

2 

L 2 

σ 2 

m 

+ 

n 

12 L 2 
�ζ + 

4 n 

3 L 2 
�2 

η

+ 

8 

√ 

2 n �p 

N 

( √ 

�ζ

2 

+ 2�η

) 

+ 

N 

3 L 2 ρn 

( √ 

�ζ

2 

+ 2�η

) 2 

, (14) 

here �p = V [ z 0 ](x ∗) is defined by the chosen proximal setup and

 [ ·] = E e 1 , ... ,e N ,ξ1 , 1 , ... ,ξN,m 
[ ·] . 

Before we proceed, we give the appropriate choice of the RDD

ethod parameters N , m , and accuracy of the directional derivative

valuation �ζ , �η . These values are chosen such that the r.h.s. of

14) is smaller than ε. For simplicity we omit numerical constants

nd summarize the obtained values of the algorithm parameters in

able 2 below. The last row represents the total number Nm of or-

cle calls, that is, the number of directional derivative evaluations,

hich was advertised in (5) . Note that the bound (14) allows also

o choose the accuracy of the directional derivative evaluation �ζ ,

η decreasing with N . This is done by making each term with �ζ

r �η in the r.h.s. to be of the same order as the first term. 

.3. Extensions for strongly convex problems 

In this section, we assume additionally that f is μp -strongly

onvex w.r.t. p -norm. Our algorithms and proofs rely on the fol-

owing fact. Let x ∗ be some fixed point and x be a random point

uch that E x 

[‖ x − x ∗‖ 2 p 

]
� R 2 p , then 

 x d 

(
x − x ∗

R p 

)
� 


p 

2 

, (15) 
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Table 1 

Algorithm 1 parameters for the cases p = 1 and p = 2 . 

p = 1 p = 2 

N O 

(√ 

n ln nL 2 �1 

ε 

)
O 

(√ 

n 2 L 2 �2 

ε 

)
m O 

(
max 

{ 
1 , 

√ 

ln n 
n 

· σ 2 

ε 3 / 2 
·
√ 

�1 

L 2 

} )
O 

(
max 

{ 
1 , σ 2 

ε 3 / 2 
·
√ 

�2 

L 2 

} )
�ζ O 

(
min 

{ 
n ( ln n ) 2 L 2 2 �1 , 

ε 2 

n �1 
, ε 

3 
2 √ 

n ln n 
·
√ 

L 2 
�1 

} )
O 

(
min 

{ 
n 3 L 2 2 �2 , 

ε 2 

n �2 
, ε 

3 
2 

n 
·
√ 

L 2 
�2 

} )
�η O 

(
min 

{ √ 

n ln nL 2 
√ 

�1 , 
ε √ 

n �1 

, ε 
3 
4 

4 √ 
n ln n 

· 4 

√ 

L 2 
�1 

} )
O 

(
min 

{ 
n 

3 
2 L 2 

√ 

�2 , 
ε √ 

n �2 

, ε 
3 
4 √ 
n 

· 4 

√ 

L 2 
�2 

} )
O-le calls O 

(
max 

{√ 

n ln nL 2 �1 

ε , 
σ 2 �1 ln n 

ε 2 

})
O 

(
max 

{√ 

n 2 L 2 �2 

ε , 
σ 2 �2 n 

ε 2 

})

Table 2 

Algorithm 2 parameters for the cases p = 1 and p = 2 . 

p = 1 p = 2 

N O 
(

L 2 �1 ln n 
ε 

)
O 
(

nL 2 �2 

ε 

)
m O 

(
max 

{
1 , σ

2 

εL 2 

})
O 
(
max 

{
1 , σ

2 

εL 2 

})
�ζ O 

(
min 

{ 
( ln n ) 2 

n 
L 2 2 �1 , 

ε 2 

n �1 
, 

εL 2 
n 

} )
O 
(
min 

{
nL 2 2 �2 , 

ε 2 

n �2 
, 

εL 2 
n 

})
�η O 

(
min 

{ 
ln n √ 

n 
L 2 
√ 

�1 , 
ε √ 

n �1 

, 
√ 

εL 2 
n 

} )
O 

(
min 

{ √ 

n L 2 
√ 

�2 , 
ε √ 

n �2 

, 
√ 

εL 2 
n 

} )
O-le calls O 

(
max 

{ 
L 2 �1 ln n 

ε , 
σ 2 �1 ln n 

ε 2 

} )
O 

(
max 

{ 
nL 2 �2 

ε , 
nσ 2 �2 

ε 2 

} )
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2  
where E x denotes the expectation with respect to random vec-

tor x and 
p is defined as follows. For p = 1 and our choice

of the prox-function (8) , 
p = e n (κ−1)(2 −κ) /κ ln n = O ( ln n ) for our

choice of κ = 1 + 

1 
ln n 

, see Nemirovsky and Yudin (1983) , Juditsky

and Nesterov (2014) . For p = 2 and our choice of the prox-

function (9) , 
p = 1 . Our Accelerated Randomized Directional

Derivative method for strongly convex problems (ARDDsc) is listed

as Algorithm 3 . 

Algorithm 3 Accelerated Randomized Directional Derivative

method for strongly convex functions (ARDDsc). 

Input: x 0 —starting point s.t. ‖ x 0 − x ∗‖ 2 p ≤ R 2 p ; K � 1 — number of it-

erations; μp – strong convexity parameter. 

Output: point u K . 

1: Set 

N 0 = 

⌈√ 

8 aL 2 
p 

μp 

⌉
, ( 16)

where a = 384 n 2 ρn . 

2: for k = 0 , . . . , K − 1 do 

3: Set 

m k := max 

{
1 , 

⌈
8 bσ 2 N 0 2 

k 

L 2 μp R 

2 
p 

⌉}
, R 

2 
k := R 

2 
p 2 

−k + 

4�

μp 

(
1 − 2 

−k 
)
,

( 17)

where b = 

4 
n . 

4: Set d k (x ) = R 2 
k 
d 

(
x −u k 

R k 

)
. 

5: Run ARDD with starting point u k and prox-function d k (x ) for

N 0 steps with batch size m k . 

6: Set u k +1 = y N 0 , k = k + 1 . 

7: end for 

8: return u K 

Theorem 3. Let f in problem (1) be μp -strongly convex and ARDDsc

method be applied to solve this problem. Then 

E f (u K ) − f ∗ � 

μp R 
2 
p 

2 
· 2 

−K + 2�. (18)
Please cite this article as: P. Dvurechensky, E. Gorbunov and A. Gas
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here � = 

61 N 0 
24 L 2 

�ζ + 

122 N 0 
3 L 2 

�2 
η + 

12 

√ 

2 nR 2 p 
p 

N 2 
0 

(√ 

�ζ

2 + 2�η

)
+ 

N 2 
0 

12 nρn L 2 √ 

�ζ

2 + 2�η

)2 

. Moreover, under an appropriate choice of �ζ and

η s.t. 2 �≤ ε/2, the oracle complexity to achieve ε-accuracy of the

olution is 

˜ 

 

(
max 

{
n 

1 
2 + 1 q 

√ 

L 2 
p 

μp 
log 2 

μp R 

2 
p 

ε 
, 

n 

2 
q σ 2 
p 

μp ε 

})
. 

Despite we have linear convergence in terms of the itera-

ions number, the number of the oracle evaluations corresponds

o sublinear convergence. The reason is that we consider general

tochastic optimization problem, rather than finite-sum problems

or which the linear convergence rate is achievable in terms of

he oracle evaluations Allen-Zhu (2017) . Our oracle complexity cor-

esponds to the lower complexity bounds Nemirovsky and Yudin

1983) for general stochastic convex optimization. 

Before we proceed to the non-accelerated method, we give the

ppropriate choice of the accuracy of the directional derivative

valuation �ζ , �η for ARDDsc to achieve an accuracy ε of the so-

ution. These values are chosen such that the r.h.s. of (18) is smaller

han ε. For simplicity we omit numerical constants and summarize

he obtained values of the algorithm parameters in Table 3 below.

he last row represents the total number of oracle calls, that is, the

umber of directional derivative evaluations, which was stated in

6) . 

Our Randomized Directional Derivative method for strongly

onvex problems (RDDsc) is listed as Algorithm 4 . 

heorem 4. Let f in problem (1) be μp -strongly convex and RDDsc

ethod be applied to solve this problem. Then 

E f (u K ) − f ∗ � 

μp R 
2 
p 

2 
· 2 

−K + 2�. (21)

here � = 

n 
12 L 2 

�ζ + 

4 n 
3 L 2 

�2 
η + 

8 

√ 

2 nR 2 p 
p 

N 0 

(√ 

�ζ

2 + 2�η

)
+ 

N 0 
3 L 2 ρn 

(√ 

�ζ

2 

+2�η

)2 
. Moreover, under an appropriate choice of �ζ and �η s.t.

 �≤ ε/2, the oracle complexity to achieve ε-accuracy of the solution
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Table 3 

Algorithm 3 parameters for the cases p = 1 and p = 2 . 

p = 1 p = 2 

�ζ O 

(
min 

{ 
ε 
√ 

L 2 μ1 

n ln n 
1 
, ε 2 

n ( ln n ) 2 L 2 2 
1 

R 2 
1 
μ2 

1 

, ε · μ1 

n 
1 

} )
O 

(
min 

{ 
ε 
√ 

L 2 μ2 

n 2 
2 
, ε 2 

n 3 L 2 2 
2 

R 2 
2 
μ2 

2 

, ε · μ2 

n 
2 

} )
�η O 

(
min 

{ √ 

ε 4 

√ 

L 2 μ1 

n ln n 
1 
, ε 

√ 
n ln nL 2 

√ 


1 

R 1 μ1 
, 

√ 

ε ·
√ 

μ1 

n 
1 

} )
O 

(
min 

{ √ 

ε 4 

√ 

L 2 μ2 

n 2 
2 
, ε 

√ 
n 3 L 2 

√ 


2 

R 2 μ2 
, 

√ 

ε ·
√ 

μ2 

n 
2 

} )
O-le calls ˜ O 

(
max 

{ √ 

n ln nL 2 
1 

μ1 
log 2 

μ1 R 
2 
1 

ε , 
σ 2 
1 ln n 

μ1 ε 

} ) ˜ O 

(
max 

{ 
n 

√ 

L 2 
2 

μ2 
log 2 

μ2 R 
2 
2 

ε , 
nσ 2 
2 

μ2 ε 

} )
Table 4 

Algorithm 4 parameters for the cases p = 1 and p = 2 . 

p = 1 p = 2 

�ζ O 

(
min 

{ 
εL 2 
n 

, ε 2 
( ln n ) 2 L 2 2 

nR 2 
1 
μ2 

1 

, ε μ1 

n 
1 

} )
O 

(
min 

{ 
εL 2 
n 

, ε 2 
nL 2 2 

R 2 
2 
μ2 

2 

, ε μ2 

n 
2 

} )
�η O 

(
min 

{ √ 

εL 2 
n 

, ε ln nL 2 √ 
n R 1 μ1 

, 

√ 

ε μ1 

n 
1 

} )
O 

(
min 

{ √ 

εL 2 
n 

, ε 
√ 

n L 2 
R 2 μ2 

, 

√ 

ε μ2 

n 
2 

} )
O-le calls ˜ O 

(
max 

{ 
L 2 
1 ln n 

μ1 
log 2 

μ1 R 
2 
1 

ε , 
σ 2 
1 

μ1 ε 

} ) ˜ O 

(
max 

{ 
nL 2 
2 

μ2 
log 2 

μ2 R 
2 
2 

ε , 
nσ 2 
2 

μ2 ε 

} )

Algorithm 4 Randomized Directional Derivative method for 

strongly convex functions (RDDsc). 

Input: x 0 —starting point s.t. ‖ x 0 − x ∗‖ 2 p ≤ R 2 p ; K � 1 — number of it- 

erations; μp – strong convexity parameter. 

Output: point u K . 

1: Set 

N 0 = 

⌈
8 aL 2 
p 

μp 

⌉
, ( 19) 

where a = 384 nρn . 

2: for k = 0 , . . . , K − 1 do 

3: Set 

m k := max 

{
1 , 

⌈
8 bσ 2 2 

k 

L 2 μp R 

2 
p 

⌉}
, R 

2 
k := R 

2 
p 2 

−k + 

4�

μp 

(
1 − 2 

−k 
)
, 

( 20) 

where b = 2 

4: Set d k (x ) = R 2 
k 
d 

(
x −u k 

R k 

)
. 

5: Run RDD with starting point u k and prox-function d k (x ) for 

N 0 steps with batch size m k . 

6: Set u k +1 = y N 0 , k = k + 1 . 

7: end for 

8: return u K 

i

O

 

t  
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s  

f  

t  

r  

(

 

c  

t  

s  

o  

t  

t  

d

2

 

d  

f  

g  

s  

w

a

 

f

∇

w  

m  

c

ζ

f  

x  

|  

T  

p  

e  

�  

s  

d

3

 

t  
s 

˜ 

 

(
max 

{
n 

2 
q L 2 
p 

μp 
log 2 

μp R 

2 
p 

ε 
, 

n 

2 
q σ 2 
p 

μp ε 

})
. 

Despite we have linear convergence in terms of the itera-

ions number, the number of the oracle evaluations corresponds

o sublinear convergence. The reason is that we consider general

tochastic optimization problem, rather than finite-sum problems

or which the linear convergence rate is achievable in terms of

he oracle evaluations Allen-Zhu (2017) . Our oracle complexity cor-

esponds to the lower complexity bounds Nemirovsky and Yudin

1983) for general stochastic convex optimization. 

Before we proceed, we give the appropriate choice of the ac-

uracy of the directional derivative evaluation �ζ , �η for RDDsc

o achieve an accuracy ε of the solution. These values are cho-

en such that the r.h.s. of (21) is smaller than ε. For simplicity we

mit numerical constants and summarize the obtained values of

he algorithm parameters in Table 4 below. The last row represents

he total number of oracle calls, that is, the number of directional

erivative evaluations, which was stated in (6) . 
Please cite this article as: P. Dvurechensky, E. Gorbunov and A. Gas
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.4. Corollaries for derivative-free optimization 

In this section, following Gorbunov et al. (2018) , we consider

erivative-free smooth stochastic optimization in the two-point

eedback situation. We assume that an optimization procedure,

iven a pair of points (x, y ) ∈ R 

2 n , can obtain a pair of noisy

tochastic realizations ( ̃  f (x, ξ ) , ̃  f (y, ξ )) of the objective value f ,

here ˜ f (x, ξ ) = F (x, ξ ) + �(x, ξ ) , | �(x, ξ ) | � �, ∀ x ∈ R 

n , a.s. in ξ , 

(22) 

nd ξ is independently drawn from P . 

Based on these observations of the objective value, we form the

ollowing stochastic approximation of ∇f ( x ) 

˜ 

 

m f t (x ) = 

1 

m 

m ∑ 

i =1 

˜ f (x + te, ξi ) − ˜ f (x, ξi ) 

t 
e 

= 

( 〈
g m (x, � ξm 

) , e 
〉
+ 

1 

m 

m ∑ 

i =1 

(ζ (x, ξi , e ) + η(x, ξi , e )) 

) 

e, 

(23) 

here e ∈ RS 2 (1), ξ i , i = 1 , . . . , m are independent realizations of ξ ,

 is the batch size , t is some small positive parameter which we

all smoothing parameter , g m (x, � ξm 

) := 

1 
m 

∑ m 

i =1 g(x, ξi ) , and 

(x, ξi , e ) = 

F (x + te, ξi ) − F (x, ξi ) 

t 
− 〈 g(x, ξi ) , e 〉 , 

η(x, ξi , e ) = 

�(x + te, ξi ) − �(x, ξi ) 

t 
, i = 1 , . . . , m. 

By Lipschitz smoothness of F ( · , ξ ), we have | ζ (x, ξ , e ) | � 

L (ξ ) t 
2 

or all x ∈ R 

n and e ∈ S 2 (1). Hence, E ξ (ζ (x, ξ , e )) 2 � 

L 2 
2 

t 2 

4 for all

 ∈ R 

n and e ∈ S 2 (1). At the same time, from (22) , we have that

 η(x, ξ , e ) | � 

2�
t for all x ∈ R 

n , e ∈ S 2 (1) and a.s. in ξ . Applying

heorem 1 and Theorem 2 with �ζ = 

L 2 
2 

t 2 

4 and �η = 

2�
t , we re-

roduce respectively the result of Theorems 2 and 3 in Gorbunov

t al. (2018) . Applying Theorems 3 and 4 with �ζ = 

L 2 
2 

t 2 

4 and

η = 

2�
t , we obtain also complexity bounds (6) for derivative-free

mooth stochastic strongly convex optimization, which was not yet

one in the literature. 

. Proof of main result for ARDD method 

We divide the proof of Theorem 1 into two large steps. First,

o simplify the derivations, we prove this theorem assuming two
nikov, An accelerated directional derivative method for smooth 

ch, https://doi.org/10.1016/j.ejor.2020.08.027 
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3 Note that α1 = 

2 
96 n 2 ρn L 2 

= 

1 
48 n 2 ρn L 2 

and therefore 48 n 2 ρn L 2 α2 
1 − α1 = 0 . 
additional inequalities which connect noisy stochastic approxima-

tion of the gradient (12) with the true gradient and function val-

ues. This result is stated as Lemma 2 . Then, in Lemma 3 , we show

that our approximation of the gradient (12) indeed satisfies these

two inequalities. 

Lemma 2. Let { x k , y k , z k }, k ≥ 0 be generated by ARDD method. As-

sume that there exist numbers δ1 > 0, δ2 > 0 such that, for all k ≥ 0

E 

[〈˜ ∇ 

m f (x k +1 ) , z k − x ∗
〉]

� 

1 

n 
E 

[〈 ∇ f (x k +1 ) , z k − x ∗〉 
]
−δ1 E [ ‖ z k − x ∗‖ ] 

(24)

and 

E 

[‖ ̃

 ∇ 

m f (x k +1 ) ‖ 

2 
q 

]
� 96 ρn L 2 ( E [ f (x k +1 )] − E [ f (y k +1 )] ) + δ2 , (25)

where expectation is taken w.r.t. all randomness and x ∗ is a solution

to (1) . Then 

E [ f (y N )] − f (x ∗) � 

384�p n 
2 ρn L 2 

N 2 
+ 

12 n 
√ 

2�p 

N 2 
δ1 + 

N 
24 ρn L 2 

δ2 + 

N 2 

12 ρn L 2 
δ2

1

(26)

where �p = V [ z 0 ](x ∗) is defined by the chosen proximal setup and

the expectation is taken w.r.t. all randomness. 

This result is proved below in Section 3.1 . 

Lemma 3. Let { x k , y k , z k }, k ≥ 0 be generated by ARDD method. Then

(24) and (25) hold with 

δ1 = 

√ 

�ζ

2 

√ 

n 

+ 

2�η√ 

n 

(27)

and 

δ2 = 

96 ρn 

n 

· σ 2 

m 

+ 61 ρn �ζ + 976 ρn �
2 
η. (28)

This result is proved below in Section 3.2 . 

Proof of Theorem 1 . Combining Lemmas 2 and 3 , we obtain

(13) . �

3.1. Proof Lemma 2 

The following lemma estimates the progress in step 8 of ARDD

method (and in step 5 of RDD method), which is a Mirror Descent

step. 

Lemma 4. Assume that z + = arg min 

v ∈ R n 

{
αn 

〈˜ ∇ 

m f (x ) , v − z 
〉
+ V [ z] ( v ) 

}
.

Then, for any fixed u ∈ R 

n , 

αn E 

[〈 ̃  ∇ 

m f (x ) , z − u 〉 ] � 

α2 n 

2 

2 

E 

[‖ ̃

 ∇ 

m f (x ) ‖ 

2 
q 

]
+ E [ V [ z](u ) ] − E [ V [ z + ](u ) ] , (29)

where expectation is taken w.r.t. all randomness. 

Proof. For all u ∈ R 

n , we have 

αn 〈 ̃  ∇ 

m f (x ) , z − u 〉 = αn 〈 ̃  ∇ 

m f (x ) , z − z + 〉 + αn 〈 ̃  ∇ 

m f (x ) , z + − u 〉
①

� αn 〈 ̃  ∇ 

m f (x ) , z − z + 〉 + 〈−∇V [ z](z + ) , z + − u 〉 
②= αn 〈 ̃  ∇ 

m f (x ) , z − z + 〉 + V [ z](u ) − V [ z + ](u ) − V [ z](z + ) 
③

� 

(
αn 〈 ̃  ∇ 

m f (x ) , z − z + 〉 − 1 

2 

‖ z − z + ‖ 

2 
p 

)
+ V [ z](u ) − V [ z + ](u ) 

④

� 

α2 n 

2 

2 

‖ ̃

 ∇ 

m f (x ) ‖ 

2 
q + V [ z](u ) − V [ z + ](u ) ,

(30)
Please cite this article as: P. Dvurechensky, E. Gorbunov and A. Gas
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here ① follows from the definition of z + , whence 〈∇V [ z](z + ) +
n ̃  ∇ 

m f t (x ) , u − z + 〉 � 0 for all u ∈ R 

n ; ② follows from the ”‘magic

dentity”’ Fact 5.3.3 in Ben-Tal and Nemirovski (2015) for the Breg-

an divergence; ③ follows from (7) ; and ④ follows from the

enchel inequality ζ 〈 s, z〉 − 1 
2 ‖ z‖ 2 p ≤ ζ 2 

2 ‖ s ‖ 2 q . Taking full expecta-

ion we get (29) . �

Now we prove the following lemma which estimates the one-

teration progress of the whole algorithm. 

emma 5. Let { x k , y k , z k , αk , τ k }, k ≥ 0 be generated by ARDD

ethod. Then, under assumptions of Lemma 2 , 

8 n 

2 ρn L 2 α
2 
k +1 E [ f (y k +1 )] − (48 n 

2 ρn L 2 α
2 
k +1 − αk +1 ) E [ f (y k ) ] 

− E [ V [ z k ](x ∗) ] + E [ V [ z k +1 ](x ∗)] − αk +1 δ1 n E [ ‖ z k − x ∗‖ p ] 

− α2 
k +1 

n 

2 

2 

δ2 � αk +1 f (x ∗) , (31)

here expectation is taken w.r.t. all randomness, x ∗ is a solution to

1) . 

roof. Combining (24) –(29) , we obtain 

k +1 E [ 〈∇ f (x k +1 ) , z k − x ∗〉 ] � 48 α2 n 2 ρn L 2 ( E [ f (x k +1 ) ] − E [ f (y k +1 ) ] ) 

+ E 

[
V z k (x ∗) 

]
− E [ V [ z k +1 ](x ∗)] + αk +1 δ1 n E [ ‖ z k − x ∗‖ p ] + 

α2 
k +1 

n 2 

2 
δ2 . 

(32)

urther, 

k +1 ( E [ f (x k +1 ) ] − f (x ∗) ) � αk +1 E [ 〈∇ f (x k +1 ) , x k +1 − x ∗〉 ] 
= αk +1 E [ 〈∇ f (x k +1 ) , x k +1 − z k 〉 ] + αk +1 E [ 〈∇ f (x k +1 ) , z k − x ∗〉 ] 
①= 

(1 − τk ) αk +1 

τk 

E [ 〈∇ f (x k +1 ) , y k − x k +1 〉 ] + αk +1 E [ 〈∇ f (x k +1 ) , z k − x ∗〉 ] 
②

� 

(1 − τk ) αk +1 

τk 

( E [ f (y k ) ] − E [ f (x k +1 ) ] ) + αk +1 E [ 〈∇ f (x k +1 ) , z k − x ∗〉 ] 
(32) 

� 

(1 − τk ) αk +1 

τk 

( E [ f (y k ) ] − E [ f (x k +1 ) ] ) + 48 α2 n 2 ρn L 2 ( E [ f (x k +1 ) ] 

−E [ f (y k +1 ) ] ) + E 

[
V z k (x ∗) 

]
− E [ V [ z k +1 ](x ∗)] + αk +1 δ1 n E [ ‖ z k − x ∗‖ p ] 

+ 

α2 
k +1 

n 2 

2 
δ2 

③= (48 α2 
k +1 n 

2 ρn L 2 − αk +1 ) E [ f (y k ) ] 

− 48 α2 
k +1 n 

2 ρn L 2 E [ f (y k +1 )] + αk +1 E [ f (x k +1 )] + E 

[
V z k (x ∗) 

]
− E [ V [ z k +1 ](x ∗)] + αk +1 δ1 n E [ ‖ z k − x ∗‖ p ] + 

α2 
k +1 

n 2 

2 
δ2 . 

ere ① is since x k +1 := τk z k + (1 − τk ) y k ⇔ τk (x k +1 − z k ) = (1 −
k )(y k − x k +1 ) , ② follows from the convexity of f and the inequality

 − τk � 0 and ③ is since τk = 

1 
48 αk +1 n 

2 ρn L 2 
. Rearranging the terms,

e obtain the statement of the lemma. �

We are now ready to finish the proof of Lemma 2 . 

roof of Lemma 3 . Note that 48 n 2 ρn L 2 α
2 
k +1 

− αk +1 + 

1 
192 n 2 ρn L 2 

=
8 n 2 ρn L 2 α

2 
k 

. That is, 

8 n 

2 ρn L 2 α
2 
k +1 − αk +1 + 

1 

192 n 

2 ρn L 2 
= 

(k + 2) 2 

192 n 

2 ρn L 2 

− k + 2 

96 n 

2 ρn L 2 
+ 

1 

192 n 

2 ρn L 2 
= 

k 2 + 4 k + 4 − 2 k − 4 + 1 

192 n 

2 ρn L 2 

= 

(k + 1) 2 

192 n 

2 ρn L 2 
= 48 n 

2 ρn L 2 α
2 
k . 

elescoping (31) for k = 0 , 1 , 2 , . . . , l − 1 for l ≤ N we have 3 

8 n 

2 ρn L 2 α
2 
l E [ f (y l )] + 

l−1 ∑ 

k =1 

1 

192 n 

2 ρn L 2 
E [ f (y k )] 
nikov, An accelerated directional derivative method for smooth 

ch, https://doi.org/10.1016/j.ejor.2020.08.027 
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E

E
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(

P

∇

w

θ

B

|  

E

− V [ z 0 ](x ∗) + E [ V [ z l ](x ∗)] − ζ1 

l−1 ∑ 

k =0 

αk +1 E [ ‖ u − z k ‖ p ] 

− ζ2 

l−1 ∑ 

k =0 

α2 
k +1 � 

l−1 ∑ 

k =0 

αk +1 f (u ) , (33) 

here we denoted 

1 := δ1 n, ζ2 := 

n 

2 

2 

δ2 . (34) 

e define � := V [ z 0 ]( x 
∗), R k := E [ ‖ x ∗ − z k ‖ p ] . Also, from (7) , we

ave that ζ1 α1 R 0 ≤
√ 

2�ζ1 

48 n 2 ρn L 2 
. To simplify the notation, we de-

ne B l := ζ2 

∑ l−1 
k =0 

α2 
k +1 

+ � + 

√ 

2�ζ1 

48 n 2 ρn L 2 
. Since 

∑ l−1 
k =0 

αk +1 = 

l (l +3) 

192 n 2 ρn L 2 
nd, for all i = 1 , . . . , N, f ( y i ) ≤ f ( x ∗), we obtain from (33) 

(l + 1) 2 

192 n 

2 ρn L 2 
E [ f (y l )] � f (x ∗) 

(
(l + 3) l 

192 n 

2 ρn L 2 
− l − 1 

192 n 

2 ρn L 2 

)
+ B l − E [ V [ z l ](x ∗)] + ζ1 

l−1 ∑ 

k =1 

αk +1 R k , 

 � 

(l + 1) 2 

192 n 

2 ρn L 2 
( E [ f (y l )] − f (x ∗) ) � B l − E [ V [ z l ](x ∗)] 

+ ζ1 

l−1 ∑ 

k =1 

αk +1 R k , (35) 

hich gives 

 [ V [ z l ](x ∗)] � B l + ζ1 

l−1 ∑ 

k =1 

αk +1 R k . (36)

oreover, 

1 

2 

( E [ ‖ z l − x ∗‖ p ] ) 
2 � 

1 

2 

E [ ‖ z l − x ∗‖ 

2 
p ] � E [ V [ z l ](x ∗)] 

(36) 
� B l + ζ1 

l−1 ∑ 

k =1 

αk +1 R k , (37) 

hence, 

R l � 

√ 

2 ·
√ 

B l + ζ1 

l−1 ∑ 

k =1 

αk +1 R k . (38) 

pplying Lemma 12 for a 0 = ζ2 α
2 
1 

+ � + 

√ 

2�ζ1 

48 n 2 ρn L 2 
, a k = ζ2 α

2 
k +1 

, b =
1 for k = 1 , . . . , N − 1 , we obtain 

B l + ζ1 

l−1 ∑ 

k =1 

αk +1 R k � 

(√ 

B l + 

√ 

2 ζ1 · l 2 

96 n 2 ρn L 2 

)2 

, l = 1 , . . . , N 

(39) 

ince V [ z ]( x ∗) ≥ 0, by inequality (35) for l = N and the definition of

 l , we have 

(N + 1) 2 

192 n 

2 ρn L 2 
( E [ f (y N )] − f (x ∗) ) � 

(√ 

B N + 

√ 

2 ζ1 · N 

2 

96 n 

2 ρn L 2 

)2 

①

� 2 B N + 4 ζ 2 
1 ·

N 

4 

(96 n 

2 ρn L 2 ) 2 
= 2 ζ2 

l−1 ∑ 

k =0 

α2 
k +1 + 2�

+ 

√ 

2�ζ1 

24 n 

2 ρn L 2 
+ 4 ζ 2 

1 ·
N 

4 

(96 n 

2 ρn L 2 ) 2 

②

� 2� + 

√ 

2�ζ1 

24 n 

2 ρn L 2 
+ 

2 ζ2 (N + 1) 3 

(96 n 

2 ρn L 2 ) 2 
+ 4 ζ 2 

1 ·
N 

4 

(96 n 

2 ρn L 2 ) 2 
(40) 

here ① is due to the fact that ∀ a, b ∈ R (a + b) 2 � 2 a 2 + 2 b 2 

nd ② is because 
∑ N−1 

k =0 
α2 

k +1 
= 

1 
(96 n 2 ρn L ) 2 

∑ N+1 
k =2 

k 2 � 

1 
(96 n 2 ρn L ) 2 

·

2 2 
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(N+1)(N+2)(2 N+3) 
6 � 

1 
(96 n 2 ρn L 2 ) 

2 · (N+1)2(N+1)3(N+1) 
6 = 

(N+1) 3 

(96 n 2 ρn L 2 ) 
2 . Di- 

iding (40) by (N+1) 2 

192 n 2 ρn L 2 
and substituting ζ 1 , ζ 2 from (34) , we

btain 

 [ f (y N )] − f (x ∗) � 

384�n 

2 ρn L 2 
(N + 1) 2 

+ 

12 

√ 

2�

(N + 1) 2 
ζ1 + 

(N + 1) ζ2 

24 n 

2 ρn L 2 

+ 

N 

4 ζ 2 
1 

12 n 

2 ρn L 2 (N + 1) 2 

� 

384�n 

2 ρn L 2 
N 

2 
+ 

12 n 

√ 

2�

N 

2 
δ1 + 

N 

24 ρn L 2 
δ2 + 

N 

2 

12 ρn L 2 
δ2 

1 . 

�

.2. Proof Lemma 3 

We start with the following technical result which connects

ur noisy approximation (12) of the stochastic gradient with the

tochastic gradient itself and also with ∇f . 

emma 6. For all x, s ∈ R 

n , we have 

E e ‖ ̃

 ∇ 

m f (x ) ‖ 

2 
q � 

12 ρn 

n 
‖ g m (x, � ξm 

) ‖ 

2 
2 + 

ρn 

m 

m ∑ 

i =1 

ζ (x, ξi ) 
2 + 16 ρn �2 

η, 

(41) 

 e ‖ ̃

 ∇ 

m f (x ) ‖ 

2 
2 � 

1 

2 n 

‖ g m (x, � ξm 

) ‖ 

2 
2 −

1 

2 m 

m ∑ 

i =1 

ζ (x, ξi ) 
2 − 8�2 

η, (42)

 e 〈 ̃  ∇ 

m f (x ) , s 〉 � 

1 

n 
〈 g m (x, � ξm 

) , s 〉 − ‖ s ‖ p 
2 m 

√ 

n 

m ∑ 

i =1 

| ζ (x, ξi ) | − 2�η‖ s ‖ p √ 

n 
, 

(43) 

 e ‖〈∇ f (x ) , e 〉 e − ˜ ∇ 

m f (x ) ‖ 

2 
2 � 

2 

n 

‖∇ f (x ) − g m (x, � ξm 

) ‖ 

2 
2 

+ 

1 

m 

m ∑ 

i =1 

ζ (x, ξi ) 
2 + 16�2 

η, (44) 

here g m (x, � ξm 

) := 

1 
m 

∑ m 

i =1 g(x, ξi ) , ζ ( x , ξ i ) and �η are defined in

3) . 

roof. First of all, we rewrite ˜ ∇ 

m f (x ) as follows 

˜ 

 

m f (x ) = 

( 〈
g m (x, � ξm 

) , e 
〉
+ 

1 

m 

m ∑ 

i =1 

θ (x, ξi , e ) 

) 

e, 

here 

(x, ξi , e ) = ζ (x, ξi ) + η(x, ξi , e ) , i = 1 , . . . , m. 

y (3) , we have 

 θ (x, ξi , e ) | ≤ | ζ (x, ξi ) | + �η. (45)

Proof of (41) . 

 e ‖ ̃

 ∇ 

m f (x ) ‖ 

2 
q = E e 

∥∥∥( 〈
g m (x, � ξm 

) , e 
〉
+ 

1 

m 

m ∑ 

i =1 

θ (x, ξi , e ) 

) 

e 

∥∥∥2 

q 

①

� 2 E e ‖〈 g m (x, � ξm 

) , e 〉 e ‖ 

2 
q + 2 E e 

∥∥∥∥∥ 1 

m 

m ∑ 

i =1 

θ (x, ξi , e ) e 

∥∥∥∥∥
2 

q 

②

� 

12 ρn 

n 

‖ g m (x, � ξm 

) ‖ 

2 
2 + 

2 ρn 

m 

m ∑ 

i =1 

(| ζ (x, ξi ) | + �η

)2 
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〈

F

w

T

R

P

o

E

w  

(

g  

δ

4

 

T  

w  

w  

(  

t  

t

L  

s  

4 Note that we use s = z k − x ∗ which does not depend on ξ1 , ξ2 , . . . , ξm from the 

(k + 1) -th iterate and it does not depend on e k +1 . Therefore we can use tower 

property of mathematical expectation and take firstly conditional expectation w.r.t. 

ξ1 , . . . , ξm and after that take full expectation. 
� 

12 ρn 

n 

‖ g m (x, � ξm 

) ‖ 

2 
2 + 

ρn 

m 

m ∑ 

i =1 

ζ (x, ξi ) 
2 + 16 ρn �

2 
η, (46)

where ① holds since ‖ x + y ‖ 2 q � 2 ‖ x ‖ 2 q + 2 ‖ y ‖ 2 q , ∀ x, y ∈ R 

n ; ② fol-

lows from inequalities (10),(11), (45) and the fact that, for any

a 1 , a 2 , . . . , a m 

> 0 , it holds that 
(∑ m 

i =1 a i 
)2 � m 

∑ m 

i =1 a 
2 
i 
. 

Proof of (42) . 

E e ‖ ̃

 ∇ 

m f (x ) ‖ 

2 
2 = E e 

∥∥∥( 〈
g m (x, � ξm 

) , e 
〉
+ 

1 

m 

m ∑ 

i =1 

θ (x, ξi , e ) 

) 

e 

∥∥∥2 

2 

①

� 

1 

2 

E e ‖〈 g m (x, � ξm 

) , e 〉 e ‖ 

2 
2 −

1 

m 

m ∑ 

i =1 

(| ζ (x, ξi ) | + �η

)2 

②

� 

1 

2 n 

‖ g m (x, � ξm 

) ‖ 

2 
2 −

1 

2 m 

m ∑ 

i =1 

ζ (x, ξi ) 
2 − 8�2 

η, (47)

where ① follows from (45) and inequality ‖ x + y ‖ 2 
2 

� 

1 
2 ‖ x ‖ 2 2 

−
‖ y ‖ 2 2 , ∀ x, y ∈ R 

n ; ② follows from e ∈ S 2 (1) and Lemma B.10 in

Bogolubsky et al. (2016) , stating that, for any s ∈ R 

n , E 〈 s, e 〉 2 =
1 
n ‖ s ‖ 2 2 

. 

Proof of (43) . 

E e 〈 ̃  ∇ 

m f (x ) , s 〉 = E e 〈〈 g m (x, � ξm 

) , e 〉 e, s 〉 + E e 
1 

m 

m ∑ 

i =1 

θ (x, ξi , e ) 〈 e, s 〉 

①

� 

1 

n 

〈 g m (x, � ξm 

) , s 〉 − 1 

m 

m ∑ 

i =1 

(| ζ (x, ξi ) | + �η

)
E e |〈 e, s 〉| 

②

� 

1 

n 

〈 g m (x, � ξm 

) , s 〉 − ‖ s ‖ p 

2 m 

√ 

n 

m ∑ 

i =1 

| ζ (x, ξi ) | − 2�η‖ s ‖ p √ 

n 

(48)

where ① follows from E e [ n 〈 g, e 〉 e ] = g, ∀ g ∈ R 

n and (45) ; ② fol-

lows from Lemma B.10 in Bogolubsky et al. (2016) , since E |〈 s, e 〉| ≤√ 

E 〈 s, e 〉 2 , and the fact that ‖ x ‖ 2 ≤‖ x ‖ p for p ≤ 2. 

Proof of (44) . 

E e ‖〈∇ f (x ) , e 〉 e − ˜ ∇ 

m f (x ) ‖ 

2 
2 

= E e 

∥∥∥∥∥〈∇ f (x ) , e 〉 e − 〈 g m (x, � ξm 

) , e 〉 e − 1 

m 

m ∑ 

i =1 

θ (x, ξi , e ) e 

∥∥∥∥∥
2 

2 

①

� 2 E e 

∥∥〈∇ f (x ) − g m (x, � ξm 

) , e 〉 e ∥∥2 

2 
+ 2 E e 

∥∥∥∥∥ 1 

m 

m ∑ 

i =1 

θ (x, ξi , e ) e 

∥∥∥∥∥
2 

2 

②

� 

2 

n 

‖∇ f (x ) − g m (x, � ξm 

) ‖ 

2 
2 + 

1 

m 

m ∑ 

i =1 

ζ (x, ξi ) 
2 + 16�2 

η, (49)

where ① holds since ‖ x + y ‖ 2 2 � 2 ‖ x ‖ 2 2 + 2 ‖ y ‖ 2 2 , ∀ x, y ∈ R 

n ; ② fol-

lows from e ∈ S 2 (1) and Lemma B.10 in Bogolubsky et al. (2016) ,

and (45) . �

We continue by proving the following lemma which estimates

the progress in step 7 of ARDD, which is a gradient step. 

Lemma 7. Assume that y = x − 1 
2 L 2 ̃

 ∇ 

m f (x ) . Then, 

‖ g m (x, � ξm 

) ‖ 

2 
2 ≤ 8 nL 2 ( f (x ) − E e f (y )) + 8 ‖∇ f (x ) − g m (x, � ξm 

) ‖ 

2 
2 

+ 

5 n 

m 

m ∑ 

i =1 

ζ (x, ξi ) 
2 + 80 n �2 

η, (50)

where g m (x, � ξm 

) is defined in Lemma 6 , ζ ( x , ξ i ) and �η are defined

in (3) . 

Proof. Since ˜ ∇ 

m f (x ) is collinear to e , we have that, for some γ ∈
R , y − x = γ e . Then, since ‖ e ‖ = 1 , 
2 
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∇ f (x ) , y − x 〉 = 〈∇ f (x ) , e 〉 γ = 〈∇ f (x ) , e 〉〈 e, y − x 〉 
= 〈〈∇ f (x ) , e 〉 e, y − x 〉 . 

rom this and L 2 -smoothness of f we obtain 

f (y ) � f (x ) + 〈〈∇ f (x ) , e 〉 e, y − x 〉 + 

L 2 
2 

|| y − x || 2 2 

� f (x ) + 〈 ̃  ∇ 

m f (x ) , y − x 〉 + L 2 || y − x || 2 2 

+ 〈〈∇ f (x ) , e 〉 e − ˜ ∇ 

m f (x ) , y − x 〉 − L 2 
2 

|| y − x || 2 2 

①

� f (x ) + 〈 ̃  ∇ 

m f (x ) , y − x 〉 + L 2 || y − x || 2 2 

+ 

1 

2 L 2 
‖〈∇ f (x ) , e 〉 e − ˜ ∇ 

m f (x ) ‖ 

2 
2 , 

here ① follows form the Fenchel inequality 〈 s, z〉 − ζ
2 ‖ z‖ 2 2 

≤
1 

2 ζ
‖ s ‖ 2 

2 
. Using y = x − 1 

2 L 2 ̃
 ∇ 

m f (x ) , we get 

1 
4 L 2 

‖ ̃

 ∇ 

m f (x ) ‖ 

2 
2 � f (x ) − f (y ) + 

1 
2 L 2 

‖〈∇ f (x ) , e 〉 e − ˜ ∇ 

m f (x ) ‖ 

2 
2 

aking the expectation in e and applying (42), (44) , we obtain 

1 

4 L 2 

( 

1 

2 n 

‖ g m (x, � ξm 

) ‖ 

2 
2 −

1 

2 m 

m ∑ 

i =1 

ζ (x, ξi ) 
2 − 8�2 

η

) 

� 

1 

4 L 2 
E e ‖ ̃

 ∇ 

m f (x ) ‖ 

2 
2 

� f (x ) − E e f (y ) + 

1 

2 L 2 
E e ‖〈∇ f (x ) , e 〉 e − ˜ ∇ 

m f (x ) ‖ 

2 
2 

� f (x ) − E e f (y ) + 

1 

2 L 2 

( 

2 

n 

‖∇ f (x ) − g m (x, � ξm 

) ‖ 

2 
2 

+ 

t 2 

m 

m ∑ 

i =1 

ζ (x, ξi ) 
2 + 16�2 

η

) 

, 

earranging the terms, we obtain the statement of the lemma. �

We are now ready to finish the proof of Lemma 3 . 

roof of Lemma 3 . Taking the expectation w.r.t. all randomness 4 

f (43) and using inequality 

 [ | ζ (x, ξi ) | ] � 

√ 

E [ | ζ (x, ξi ) | 2 ] 
(3) 
� 

√ 

�ζ , 

e obtain inequality (24) with δ1 = 

√ 

�ζ

2 
√ 

n 
+ 

2�η√ 

n 
. Combining

41) and (50) , taking the full expectation and using E [ ‖∇ f (x ) −
 

m (x, ξ ) ‖ 2 2 ] � 

σ 2 

m 

, which follows from (2) , we obtain (25) with

2 = 

96 ρn 
n · σ 2 

m 

+ 61 ρn �ζ + 976 ρn �2 
η . �

. Proof of main result for RDD method 

As in the previous section, we divide the proof of

heorem 2 into large steps. First, to simplify the derivations,

e prove this theorem assuming two additional inequalities

hich connect or noisy stochastic approximation of the gradient

12) with the true gradient and function values. Then we show

hat our approximation of the gradient (12) indeed satisfies these

wo inequalities. 

emma 8. Let { x k , y k , z k }, k ≥ 0 be generated by RDD method. As-

ume that there exist numbers δ1 > 0, δ2 > 0 such that, for all k ≥ 0
nikov, An accelerated directional derivative method for smooth 
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a

E
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1  
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g

�
2 

5 Note that we use s = x k − x ∗ which does not depend on ξ1 , ξ2 , . . . , ξm from 

the (k + 1) th iterate and it does not depend on e k +1 . Therefore we can use tower 

property of mathematical expectation and take firstly conditional expectation w.r.t. 
 

[〈˜ ∇ 

m f (x k ) , x k − x ∗
〉]

� 

1 

n 

E [ 〈 ∇ f (x k ) , x k − x ∗〉 ] − δ1 E [ ‖ x k − x ∗‖ p ] 

(51) 

 

[‖ ̃

 ∇ 

m f (x k ) ‖ 

2 
q 

]
� 

48 ρn L 2 
n 

( E [ f (x k ) ] − f (x ∗) ) + δ2 , (52) 

here expectation is taken w.r.t. all randomness and x ∗ is a solution

o (1) . Then 

 [ f ( ̄x N )] − f (x ∗) � 

384 nρn L 2 �p 

N 

+ 

n 

12 ρn L 2 
δ2 

+ 

8 n 

√ 

2�p 

N 

δ1 + 

nN 

3 L 2 ρn 
δ2 

1 , (53) 

here �p = V [ z 0 ](x ∗) is defined by the chosen proximal setup and

he expectation is taken w.r.t. all randomness. 

This result is proved below in Section 4.1 . 

emma 9. Let { x k , y k , z k }, k ≥ 0 be generated by RDD method. Then

51) and (52) hold with 

1 = 

√ 

�ζ

2 

√ 

n 

+ 

2�η√ 

n 

(54) 

nd 

2 = 

24 ρn 

n 

· σ 2 

m 

+ ρn �ζ + 16 ρn �
2 
η. (55)

This result is proved below in Section 4.2 . 

roof of Theorem 2. Combining Lemmas 8 and 9 , we obtain

14) . �

.1. Proof Lemma 8 

Combining (29), (51) and (52) we get 

E [ 〈 ∇ f (x k ) , x k − x ∗〉 ] � 24 α2 nρn L 2 ( E [ f (x k ) ] 

− f (x ∗) ) + αδ1 n E [ ‖ x k − x ∗‖ p ] + 

α2 n 

2 

2 

δ2 

+ E [ V [ x k ](x ∗) ] − E [ V [ x k +1 ](x ∗) ] , 

hence due to convexity of f we have 

(α − 24 α2 nρn L 2 ) ︸ ︷︷ ︸ 
α
4 

( E [ f (x k )] − f (x ∗) ) � αδ1 n E [ ‖ x k − x ∗‖ p ] 

+ 

α2 n 

2 

2 

δ2 + E [ V [ x k ](x ∗)] − E [ V [ x k +1 ](x ∗)] , (56) 

ecause α = 

1 
48 nρn L 2 

. Summing (56) for k = 0 , . . . , l − 1 , where l ≤ N

e get 

 � 

Nα

4 

( E [ f ( ̄x l )] − f (x ∗) ) � 

α2 n 

2 l 

2 

δ2 + αδ1 n 

l−1 ∑ 

k =0 

E [ ‖ x k − x ∗‖ p ] 

+ V [ x 0 ](x ∗) ︸ ︷︷ ︸ 
�p 

−E [ V [ x l ](x ∗)] , (57) 

here x̄ l 
def = 

1 

l 

l−1 ∑ 

k =0 

x k . From the previous inequality we get 

1 

2 

( E [ ‖ x l − x ∗‖ p ] ) 
2 � 

1 

2 

E [ ‖ x l − x ∗‖ 

2 
p ] � E [ V [ x l ](x ∗)] 

� �p + l · α2 n 

2 

2 

δ2 + αδ1 n 

l−1 ∑ 

k =0 

E [ ‖ x k − x ∗‖ p ] , (58) 
ξ
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hence ∀ l ≤ N we obtain 

 [ ‖ x k − x ∗‖ p ] � 

√ 

2 

√ 

�p + l · α2 n 

2 

2 

δ2 + αδ1 n 

l−1 ∑ 

k =0 

E [ ‖ x k − x ∗‖ p ] . 

(59) 

enote R k = E [ ‖ x ∗ − x k ‖ p ] for k = 0 , . . . , N. Applying Lemma 13 for

 0 = �p + αδ1 n E [ ‖ x 0 − x ∗‖ p ] � �p + αn 
√ 

2�p δ1 , a k = 

α2 n 2 

2 δ2 , b = 

δ1 for k = 1 , . . . , N − 1 we have for l = N

Nα
4 ( E [ f ( ̄x N )] − f (x ∗) ) 

� 

(√ 

�p + N · α2 n 2 

2 
δ2 + αn 

√ 

2�p δ1 + 

√ 

2 nδ1 αN 

)2 

①

� 2�p + Nα2 n 

2 δ2 + 2 αn 

√ 

2�p δ1 + 4 n 

2 δ2 
1 α

2 N 

2 , 

hence 

E [ f ( ̄x N )] − f (x ∗) � 

384 nρn L 2 �p 

N 
+ 

n 
12 ρn L 2 

δ2 + 

8 n 
√ 

2�p 

N 
δ1 + 

nN 
3 L 2 ρn 

δ2 
1 , 

ecause α = 

1 
48 nρn L 2 

. 

.2. Proof Lemma 9 

Taking mathematical expectation w.r.t. all randomness from the

43) we obtain 

5 inequality (51) with δ1 = 

√ 

�ζ

2 
√ 

n 
+ 

2�η√ 

n 
, because

 [ | ζ (x, ξi ) | ] � 

√ 

E [ | ζ (x, ξi ) | 2 ] 
(3) 
� 

√ 

�ζ . Combining (41) and 

 g m (x, � ξm 

) ‖ 

2 
2 � 2 ‖∇ f (x ) ‖ 

2 
2 + 2 ‖∇ f (x ) − g m (x, � ξm 

) ‖ 

2 
2 

� 4 L 2 ( E [ f (x )] − f (x ∗) ) + 2 ‖∇ f (x ) − g m (x, � ξm 

) ‖ 

2 
2 , 

× E [ ‖∇ f (x ) − g m (x, � ξm 

) ‖ 

2 
2 ] � 

σ 2 

m 

nd taking full mathematical expectation we obtain (52) with δ2 =
24 ρn 

n · σ 2 

m 

+ ρn �ζ + 16 ρn �
2 
η . 

. Proofs for strongly convex problems 

.1. Accelerated algorithm 

emma 10. Assume that we start ARDD Algorithm 1 from a random

oint x 0 such that E x 0 ‖ x ∗ − x 0 ‖ 2 p � R 2 p , use the function R 2 p d 

(
x −x 0 

R p 

)
s the prox-function and run ARDD for N 0 iterations. Then 

 [ f (y N 0 )] − f ∗ � 

aL 2 R 

2 
p 
p 

N 

2 
0 

+ 

bσ 2 N 0 

mL 2 
+ �, 

here a = 384 n 2 ρn , b = 

4 
n , � = 

61 N 0 
24 L 2 

�ζ + 

122 N 0 
3 L 2 

�2 
η +

12 

√ 

2 nR 2 p 
p 

N 2 
0 

(√ 

�ζ

2 + 2�η

)
+ 

N 2 
0 

12 nρn L 2 

(√ 

�ζ

2 + 2�η

)2 

and the ex- 

ectation is taken with respect to all the randomness. 

roof. Note that R 2 p d 

(
x −x 0 

R p 

)
is strongly convex with constant

 w.r.t ‖ · ‖ p . Since 0 = arg min d(x ) , we have, for the prox-

unction d̄ (x ) = R 2 p d 

(
x −x 0 

R p 

)
and corresponding Bregman diver-

ence V̄ [ x 0 ](x ) , 

p = ̄V [ x 0 ](x ∗) = d̄ (x ∗) − d̄ (x 0 ) − 〈∇ d̄ (x 0 ) , x ∗ − x 0 〉 = d̄ (x ∗) ≤
R 2 p 
p 

. 
1 , . . . , ξm and after that take full expectation. 
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Applying Theorem 1 an taking additional expectation w.r.t to x 0 ,

we finish the proof of the lemma. �

Proof of Theorem 3. We prove by induction that 

E ‖ u k − x ∗‖ 

2 
p ≤ R 

2 
k = R 

2 
p 2 

−k + 

4�

μp 

(
1 − 2 

−k 
)
. (60)

For k = 0 , this inequality obviously holds. Let us assume that

it holds for some k ≥ 0 and prove the induction step. Applying

Lemma 10 at the step k of Algorithm 3 , we obtain that 

E f (u k +1 ) − f ∗ = E f (y N 0 ) − f ∗ � 

aL 2 R 

2 
k 

p 

N 

2 
0 

+ 

bσ 2 N 0 

m k L 2 
+ �. 

By definition of N 0 , we have 

aL 2 R 

2 
k 

p 

N 

2 
0 

� 

aL 2 R 

2 
k 

p 

8 aL 2 
p 

μp 

= 

μp R 

2 
k 

8 

. 

By definition of m k , we have 

m k � 

8 bσ 2 N 0 

L 2 μp R 

2 
p 2 

−k 
� 

8 bσ 2 N 0 

L 2 μp 

(
R 

2 
p 2 

−k + 

4�
μp 

(
1 − 2 

−k 
)) = 

8 bσ 2 N 0 

L 2 μp R 

2 
k 

and 

bσ 2 N 0 

m k L 2 
� 

bσ 2 N 0 

L 2 
8 bσ 2 N 0 
L 2 μp R 2 k 

= 

μp R 

2 
k 

8 

. 

Hence, 

E f (u k +1 ) − f ∗ � 

μp R 

2 
k 

4 

+ � = 

μp 

4 

(
R 

2 
p 2 

−k + 

4�

μp 

(
1 − 2 

−k 
))

+ � = 

μp 

2 

(
R 

2 
p 2 

−(k +1) + 

4�

μp 

(
1 − 2 

−(k +1) 
))

= 

μp R 

2 
k +1 

2 

. 

Since f is strongly convex, we have 

E ‖ u k +1 − x ∗‖ 

2 
p � 

2 

μp 
(E f (u k +1 ) − f ∗) � R 

2 
k +1 . 

This finishes the induction step and, as a byproduct, we obtain in-

equality (18) . 

It remains to estimate the complexity. To make the right

hand side of (18) smaller than ε it is sufficient to choose K =⌈ 

log 2 
μp R 

2 
p 

ε 

⌉ 

. To estimate the total number of oracle calls, we

write 

Number of calls = 

K−1 ∑ 

k =0 

N 0 m k � 

K−1 ∑ 

k =0 

N 0 

(
1 + 

8 bσ 2 N 0 2 
k 

L 2 μp R 2 p 

)
� KN 0 + 

8 bσ 2 N 

2 
0 2 

K 

L 2 μp R 2 p 

� 

√ 

8 aL 2 
p 

μp 
log 2 

μp R 
2 
p 

ε 
+ 

8 bσ 2 

L 2 μp R 2 p 

· 8 aL 2 
p 

μp 
· μp R 

2 
p 

ε 

� 

√ 

8 aL 2 
p 

μp 
log 2 

μp R 
2 
p 

ε 
+ 

64 abσ 2 
p 

μp ε 

= ̃

 O 

( 

max 

{ 

n 
1 
2 

+ 1 q 

√ 

L 2 
p 

μp 
log 2 

μp R 
2 
p 

ε 
, 

n 
2 
q σ 2 
p 

μp ε 

} ) 

, 

where we used that a = 384 n 2 ρn , b = 

4 
n and ρn is given in
Lemma 1 . �
h  
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.2. Non-accelerated algorithm 

emma 11. Assume that we start RDD Algorithm 2 from a random

oint x 0 such that E x 0 ‖ x ∗ − x 0 ‖ 2 p � R 2 p , use the function R 2 p d 

(
x −x 0 

R p 

)
s the prox-function and run RDD for N 0 iterations. Then 

 [ f (y N 0 )] − f ∗ � 

aL 2 R 

2 
p 
p 

N 0 

+ 

bσ 2 

mL 2 
+ �, 

here a = 192 nρn , b = 2 , � = 

n 
12 L 2 

�ζ + 

4 n 
3 L 2 

�2 
η + 

8 

√ 

2 nR 2 p 
p 

N 0 √ 

�ζ

2 + 2�η

)
+ 

N 0 
3 L 2 ρn 

(√ 

�ζ

2 + 2�η

)2 

and the expectation is

aken with respect to all the randomness. 

roof. Note that R 2 p d 

(
x −x 0 

R p 

)
is strongly convex with constant

 w.r.t ‖ · ‖ p . Since 0 = arg min d(x ) , we have, for the prox-

unction d̄ (x ) = R 2 p d 

(
x −x 0 

R p 

)
and corresponding Bregman diver-

ence V̄ [ x 0 ](x ) , 

p = V̄ [ x 0 ](x ∗) = ̄d (x ∗) − d̄ (x 0 ) − 〈∇ d̄ (x 0 ) , x ∗ − x 0 〉 = d̄ (x ∗) ≤
R 2 p 
p 

2 
. 

pplying Theorem 2 an taking additional expectation w.r.t to x 0 ,

e finish the proof of the lemma. �

roof of Theorem 4 . We prove by induction that 

 ‖ u k − x ∗‖ 

2 
p ≤ R 

2 
k = R 

2 
p 2 

−k + 

4�

μp 

(
1 − 2 

−k 
)
. (61)

or k = 0 , this inequality obviously holds. Let us assume that

t holds for some k ≥ 0 and prove the induction step. Applying

emma 11 at the step k of Algorithm 4 , we obtain that 

 f (u k +1 ) − f ∗ = E f (y N 0 ) − f ∗ � 

aL 2 R 

2 
k 

p 

N 0 

+ 

bσ 2 

m k L 2 
+ �. 

y definition of N 0 , we have 

aL 2 R 

2 
k 

p 

N 0 

� 

aL 2 R 

2 
k 

p 

8 aL 2 
p 

μp 

= 

μp R 

2 
k 

8 

. 

y definition of m k , we have 

 k � 

8 bσ 2 

L 2 μp R 

2 
p 2 

−k 
� 

8 bσ 2 

L 2 μp 

(
R 

2 
p 2 

−k + 

4�
μp 

(
1 − 2 

−k 
)) = 

8 bσ 2 

L 2 μp R 

2 
k 

nd 

bσ 2 

m k L 2 
� 

bσ 2 

L 2 
8 bσ 2 

L 2 μp R 2 k 

= 

μp R 

2 
k 

8 

. 

ence, 

 f (u k +1 ) − f ∗ � 

μp R 

2 
k 

4 

+ � = 

μp 

4 

(
R 

2 
p 2 

−k + 

4�

μp 

(
1 − 2 

−k 
))

+� = 

μp 

2 

(
R 

2 
p 2 

−(k +1) + 

4�

μp 

(
1 − 2 

−(k +1) 
))

= 

μp R 

2 
k +1 

2 

. 

ince f is strongly convex, we have 

 ‖ u k +1 − x ∗‖ 

2 
p � 

2 

μp 
(E f (u k +1 ) − f ∗) � R 

2 
k +1 . 

his finishes the induction step and, as a byproduct, we obtain in-

quality (21) . 

It remains to estimate the complexity. To make the right

and side of (21) smaller than ε it is sufficient to choose K =
nikov, An accelerated directional derivative method for smooth 
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Fig. 1. ARDD, RDD and RSGF applied to minimize Nesterov’s function (62) . We use _E and _NE to define � 2 and � 1 proximal setups respectively (see (8) and (9) for the 

details). In the plot for n = 50 0 0 number of oracle calls is divided by 10 7 . 
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log 2 
μp R 

2 
p 

ε 

⌉ 

. To estimate the total number of oracle calls, we

rite 

umber of calls = 

K−1 ∑ 

k =0 

N 0 m k � 

K−1 ∑ 

k =0 

N 0 

(
1 + 

8 bσ 2 2 

k 

L 2 μp R 

2 
p 

)
� KN 0 + 

8 bσ 2 N 0 2 

K 

L 2 μp R 

2 
p 

� 

8 aL 2 
p 

μp 
log 2 

μp R 

2 
p 

ε 
+ 

8 bσ 2 

L 2 μp R 

2 
p 

· 8 aL 2 
p 

μp 
· μp R 

2 
p 

ε 

� 

8 aL 2 
p 

μp 
log 2 

μp R 

2 
p 

ε 
+ 

64 abσ 2 
p 

μp ε 

= 

˜ O 

(
max 

{
n 

2 
q L 2 
p 

μp 
log 2 

μp R 

2 
p 

ε 
, 

n 

2 
q σ 2 
p 

μp ε 

})
, 

here we used that a = 192 nρn , b = 2 and ρn is given in

emma 1 . �

. Numerical experiments 

In this section we numerically test our methods on the “worst

n the world” function from Nesterov (2004) and least squares

roblem. In these problems there is no noise of type η( x , ξ , e )

rom (3) since one can compute directional derivatives with ma-

hine precision. Moreover, for both examples one can compute ex-

ct functional values, therefore, using small enough smoothing pa-

ameter t (see (23) ) it is possible to approximate directional deriva-

ives via finite differences with high enough accuracy. That is, for
Please cite this article as: P. Dvurechensky, E. Gorbunov and A. Gas
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he problems we consider in this section the difference between

irectional derivative oracle and derivative-free oracle is negligible

o influence the behaviour of our methods. Taking it into account

e consider only derivative-free oracle in the experiments and

ompare our methods with RSGF from Ghadimi and Lan (2013) . 

.1. Nesterov’s function 

We start with numerical tests on Nesterov’s function 

f (x ) = 

L 

8 

( 

x 2 1 + 

n −1 ∑ 

i =0 

( x i − x i +1 ) 
2 + x 2 i 

) 

− L 

4 

x 1 (62) 

hich is convex, L -smooth and attains its minimal value f ∗ =
L 
8 

(
−1 + 

1 
n +1 

)
at such x ∗ = (x ∗

1 
, . . . , x ∗n ) � that x ∗

i 
= 1 − i 

n +1 for i =
 , . . . , n Nesterov (2004) . We take the starting point x 0 such that

ll coordinates expect the first one coincides with corresponding

oordinates of x ∗ and we take 10 as the first coordinate of x 0 . We

lso choose L = 10 , t = 10 −8 and consider n = 10 0 , 10 0 0 , 50 0 0 . The

esults can be found in Fig. 1 . 

In these settings ‖ x 0 − x ∗‖ 1 = ‖ x 0 − x ∗‖ 2 and our theory estab-

ishes (see Tables 1 and 2 ) better complexity bounds for the case

hen p = 1 then for the Euclidean case especially for big n . The

xperiments confirm this claim: as one can see in Fig. 1 , the choice

f � 1 proximal setup becomes more beneficial than standard Eu-

lidean setup for n = 10 0 0 and n = 50 0 0 to reach good enough

ccuracy. Indeed, our choice of the starting point and L implies

hat f (x 0 ) − f (x ∗) ≈ 200 and for n = 1000 and n = 5000 ARDD

ith � 1 proximal setup (ARDD_NE in Fig. 1 ) make f (x N ) − f (x ∗)
f order 10 −3 − 10 −5 faster than ARDD with p = 2 (ARDD_E in
nikov, An accelerated directional derivative method for smooth 
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Fig. 2. ARDD, RDD and RSGF applied to solve least squares problem (63) . We use 

_E and _NE to define � 2 and � 1 proximal setups respectively (see (8) and (9) for 

the details). For all methods batch size m equals 50. By oracle call we mean one 

computation of functional value of a summand. Number of oracle calls is divided 

by 10 8 . 
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Fig. 1 ) and RDD with p = 1 (RDD_NE in Fig. 1 ) finds such x N that

f (x N ) − f (x ∗) is of order 10 −3 faster than its Euclidean counterpart

(RDD_E in Fig. 1 ). Finally, all of our methods outperform RSGF on

the considered problem. 

To perform mirror descent step for p = 1 we apply relations ob-

tained in Appendix B from Gorbunov et al. (2018) . See other details

connected with parameters tuning in Appendix C of this work. 

6.2. Least squares problem 

In this section we consider least squares problem: 

min 

x ∈ R n 

{ 

f (x ) = 

1 

2 r 
‖ Ax − b‖ 

2 
2 = 

1 

r 

r ∑ 

i =1 

1 

2 

(A i x − b i ) 
2 

} 

. (63)

Here A is r × n real matrix, b ∈ R 

r and A i denotes the i th row

of A . Clearly, f ( x ) is convex and smooth function. Moreover,

each summand f i (x ) = 

1 
2 (A i x − b i ) 

2 is also convex and L 2. i -smooth

function with L 2 ,i = ‖ A i ‖ 2 2 
. One can consider (63) as (1) with

F (x, ξ ) = f ξ (x ) = 

1 
2 (A ξ x − b ξ ) 2 where ξ is uniformly distributed on

{ 1 , 2 , . . . , r} . Then, by definition of L 2 we have 

L 2 = 

√ 

E ξ L 2 
2 ,ξ

= 

√ 

1 

r 

r ∑ 

i =1 

‖ A i ‖ 

2 
2 

= 

‖ A ‖ F √ 

r 
(64)

where ‖ A ‖ F denotes Frobenius norm of matrix A . 

In our preliminary experiments elements of A and b were sam-

pled independently from the standard normal distribution and

then matrix A was normalized by its � 2 -norm. In particular, we

choose r = 300 and n = 400 which implies that f ( x ) is just con-

vex but not strongly convex and f (x ∗) = 0 . Moreover, we compute

the solution x ∗ as A 

+ b where A 

+ denotes Moore-Penrose inverse

of A and choose the starting point x 0 as x ∗ and 100 to the first

component. In our tests the suboptimality of the starting point, i.e.

f (x 0 ) − f (x ∗) , was approximately 3. The results can be found in

Fig. 2 . We want to notice that in these preliminary experiments

with stochasticity in functional values in experiments with ARDD

it was needed to tune not only αk +1 that appears in the mirror

descent step, but also the stepsize for the gradient step, see the

details in Appendix C . 

7. Conclusion 

In this paper we propose four novel directional derivative meth-

ods for smooth stochastic convex and strongly convex optimization
Please cite this article as: P. Dvurechensky, E. Gorbunov and A. Gas
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ith corollaries for derivative-free optimization. These methods are

ble to work with Euclidean and non-Euclidean proximal setups.

e prove complexity results showing that in non-Euclidean case

omplexities of our methods outperform state-of-the-art results

or directional derivative and derivative-free methods in terms of

he dependence on the dimension of the problem under assump-

ion that � 1 and � 2 norms of x 0 − x ∗ are close to each other, e.g.

hen x 0 = 0 and x ∗ is sparse. Moreover, we analyze our meth-

ds under general assumptions on the noisy oracle and provide

ounds for the admissible noise levels. Since we use mini-batches,

e are able to separate iteration complexity and sample complex-

ty, the former being up to a dimension-dependent factor the same

s for accelerated gradient method in the standard deterministic

ull-gradient setting. This makes our methods amenable to paral-

el computation setting Dvurechensky, Gasnikov, and Lagunovskaya

2018b) and leads to acceleration in this setting compared to stan-

ard stochastic gradient methods Duchi et al. (2015) . Finally, we

onduct several experiments providing numerical justifications of

he obtained results. 

Using an additional “light-tail” assumption that

 ξ [ exp (‖ g(x, ξ ) − ∇ f (x ) ‖ 2 2 /σ
2 )] � exp (1) and techniques of

orbunov, Dvinskikh, and Gasnikov (2019) our algorithms and

nalysis can be extended to obtain results in terms of probability

f large deviations. For example, in the case of controlled noise

evels �ζ , �η this means that an algorithm outputs a point x̂

hich satisfies P { f ( ̂  x ) − f (x ∗) � ε} � 1 − δ, where δ ∈ (0, 1) is

he confidence level, for the price of extra ln 

1 
δ

factor in N and

 . As directions of future research we would like to point a

rimal-dual extension for problems with linear constraints in

he spirit of ( Dvurechensky et al., 2016 ; Chernov, Dvurechensky,

nd Gasnikov, 2016 ; Anikin, Gasnikov, Dvurechensky, Tyurin, and

hernov, 2017 ; Bayandina, Dvurechensky, Gasnikov, Stonyakin,

nd Titov, 2018a ; Dvurechensky, Dvinskikh, Gasnikov, Uribe, and

edi ́c, 2018a ; Dvinskikh, Gorbunov, Gasnikov, Dvurechensky, and

ribe, 2019 ; Nesterov, Gasnikov, Guminov, and Dvurechensky,

020 ), an extension with line-search to adapt to an unknown

alue of L 2 using the techniques in ( Cartis and Scheinberg, 2018 ;

erahas, Cao, and Scheinberg, 2019c ; Dvinskikh, Ogaltsov, Gas-

ikov, Dvurechensky, and Spokoiny, 2020 ), an extension for the

ase of intermediate smoothness ( Kamzolov, Dvurechensky, and

asnikov, 2020 ; Nesterov, 2015 ) or interpolation between acceler-

ted and non-accelerated methods ( Dvurechensky and Gasnikov,

016 ; Gasnikov and Dvurechensky, 2016 ), as well as extension to

 more general type of inexactness called inexact model of the

bjective Stonyakin et al. (2020, 2019) . 
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ppendix A. Proof of Lemma 1 

Here we prove that, for e ∈ RS 2 (1) 

 [ ‖ e ‖ 

2 
q ] � min { q − 1 , 16 ln n − 8 } n 

2 
q −1 

, (A.1)

 [ 〈 s, e 〉 2 ‖ e ‖ 

2 
q ] � 6 ‖ s ‖ 

2 
2 min { q − 1 , 16 ln n − 8 } n 

2 
q −2 

. (A.2)

We start with proving the following inequality which could be

ough for big q : 

 [ ‖ e ‖ 

2 
q ] � (q − 1) n 

2 
q −1 

, 2 � q < ∞ . (A.3)
nikov, An accelerated directional derivative method for smooth 
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T(
e have 

E [ ‖ e ‖ 

2 
q ] = E 

[ (
n ∑ 

k =1 

| e k | q 
) 2 

q 

] 

①

� 

( 

E 

[ 

n ∑ 

k =1 

| e k | q 
] ) 

2 
q 

②= ( n E [ | e 2 | q ] ) 2 q , 

(A.4) 

here ① is due to probabilistic version of Jensen’s inequality

function ϕ(x ) = x 
2 
q is concave, because q ≥ 2) and ② is because

athematical expectation is linear and components of vector e are

dentically distributed. 

Moreover, due to Poincare lemma, we have 

 = 

d 
ξ√ 

ξ 2 
1 

+ · · · + ξ 2 
n 

, (A.5) 

here ξ is Gaussian random vector which mathematical expecta-

ion is zero vector and covariance matrix is identical. Then 

 [ | e 2 | q ] = E 

[ 

| ξ2 | q (
ξ 2 

1 
+ . . . + ξ 2 

n 

) q 
2 

] 

= 

∫ 
· · ·

∫ 
R n 

| x 2 | q 
( 

n ∑ 

k =1 

x 2 k 

) − q 
2 

· 1 

(2 π) 
n 
2 

× exp 

( 

−1 

2 

n ∑ 

k =1 

x 2 k 

) 

d x 1 . . . d x n . 

onsider spherical coordinates: 

 1 = r cos ϕ sin θ1 . . . sin θn −2 , 

 2 = r sin ϕ sin θ1 . . . sin θn −2 , 

 3 = r cos θ1 sin θ2 . . . sin θn −2 , 

 4 = r cos θ2 sin θ3 . . . sin θn −2 , 

. . . 

 n = r cos θn −2 , 

 > 0 , ϕ ∈ [0 , 2 π) , θi ∈ [0 , π ] , i = 1 , n − 2 . 

he Jacobian of mapping is 

et 

(
∂(x 1 , . . . , x n ) 

∂(r, ϕ, θ1 , θ2 , . . . , θn −2 ) 

)
= r n −1 sin θ1 ( sin θ2 ) 

2 . . . ( sin θn −2 ) 
n −2 . 

hen mathematical expectation E [ | e 2 | q ] could be rewritten in the

ollowing form: 

 [ | e 2 | q ] 
= 

∫ 
· · ·

∫ 
r> 0 , ϕ∈ [0 , 2 π) , 

θi ∈ [0 ,π ] , i = 1 ,n −2 

r n −1 | sin ϕ| q | sin θ1 | q +1 | sin θ2 | q +2 . . . | 

× sin θn −2 | q + n −2 · e −
r 2 

2 

(2 π) 
n 
2 

d r . . . d θn −2 

= 

1 

(2 π) 
n 
2 

I r · I ϕ · I θ1 
· I θ2 

· . . . · I θn −2 
, 

here 

I r = 

∫ + ∞ 

0 

r n −1 e −
r 2 

2 dr, 

I ϕ = 

∫ 2 π

0 

| sin ϕ| q dϕ = 2 

∫ π

0 

| sin ϕ| q dϕ, 

 θi 
= 

∫ π

0 

| sin θi | q + i dθi , i = 1 , n − 2 . 

ow we are going to compute these integrals. Start with I r : 

 r = 

∫ + ∞ 

r n −1 e −
r 2 

2 dr = /r = 

√ 

2 t / = 

∫ + ∞ 

(2 t) 
n 
2 −1 e −t dt = 2 

n 
2 −1 �

(
n 

2 

)
. 
0 0 

Please cite this article as: P. Dvurechensky, E. Gorbunov and A. Gas

stochastic convex optimization, European Journal of Operational Resear
o compute other integrals it is useful to consider the following

ntegral ( α > 0): ∫ π

0 

| sin ϕ| αdϕ = 2 

∫ π
2 

0 

| sin ϕ| αdϕ 

= 2 

∫ π
2 

0 

( sin 

2 ϕ) 
α
2 dϕ = /t = sin 

2 ϕ/ 

= 

∫ 1 

0 

t 
α−1 

2 (1 − t) −
1 
2 dt = B 

(
α + 1 

2 

, 
1 

2 

)
= 

�
(

α+1 
2 

)
�
(

1 
2 

)
�
(

α+2 
2 

) = 

√ 

π
�
(

α+1 
2 

)
�
(

α+2 
2 

) . 

rom this we obtain 

 [ | e 2 | q ] = 

1 

(2 π) 
n 
2 

I r · I ϕ · I θ1 
· I θ2 

· . . . · I θn −2 

= 

1 

(2 π) 
n 
2 

· 2 

n 
2 −1 �

(
n 

2 

)
· 2 

√ 

π
�
(

q +1 
2 

)
�
(

q +2 
2 

)
· √ 

π
�
(

q +2 
2 

)
�
(

q +3 
2 

) · √ 

π
�
(

q +3 
2 

)
�
(

q +4 
2 

) · . . . · √ 

π
�
(

q + n −1 
2 

)
�
(

q + n 
2 

)
= 

1 √ 

π
·
�
(

n 
2 

)
�
(

q +1 
2 

)
�( q + n 

2 
) 

. (A.6) 

ow, we want to show that ∀ q ≥ 2 

1 √ 

π
· �( n 

2 
)�( q +1 

2 
) 

�( q + n 
2 

) 
� 

(
q − 1 

n 

) q 
2 

. (A.7) 

t the beginning show that (A.7) holds for q = 2 (and arbitrary

 ): 

1 √ 

π
· �( n 

2 
)�( 2+1 

2 
) 

�( 2+ n 
2 

) 
− 1 

n 

= 

1 √ 

π
· �( n 

2 
) · 1 

2 
�( 1 

2 
) 

n 
2 
�( n 

2 
) 

− 1 

n 

= 

1 

n 

− 1 

n 

= 0 � 0 . 

onsider the function 

f n (q ) = 

1 √ 

π
· �( n 

2 
)�( q +1 

2 
) 

�( q + n 
2 

) 
−
(

q − 1 

n 

) q 
2 

here q ≥ 2. Also consider ψ(x ) = 

d( ln (�(x ))) 
dx 

with x > 0 which is

alled ( digamma function ). For gamma function it holds 

(x + 1) = x �(x ) , x > 0 . 

aking natural logarithm from it and taking derivative w.r.t. x : 

ln �(x + 1) = ln �(x ) + ln x, 

d( ln (�(x + 1))) 

dx 
= 

d( ln (�(x ))) 

dx 
+ 

1 

x 
, 

hich could be written in digamma-function-notation: 

(x + 1) = ψ(x ) + 

1 

x 
. (A.8)

ne can show that digamma function is monotonically increases

hen x > 0. To prove this fact we are going to show that 

�′ (x ) 
)2 

< �(x )�′′ (x ) . (A.9)

hat is, 

�′ (x ) 
)2 = 

(∫ + ∞ 

0 

e −t ln t · t x −1 dt 

)2 

①
< 

∫ + ∞ 

(
e −

t 
2 t 

x −1 
2 

)2 

d t ·
∫ + ∞ 

(
e −

t 
2 t 

x −1 
2 ln t 

)2 

d t 

0 0 
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= 

∫ + ∞ 

0 

e −t t x −1 dt ︸ ︷︷ ︸ 
�(x ) 

·
∫ + ∞ 

0 

e t t x −1 ln 

2 
tdt ︸ ︷︷ ︸ 

�′′ (x ) 

, 

where ① follows from Cauchy-Schwartz inequality (the equality

cannot occur because functions e −
t 
2 t 

x −1 
2 and e −

t 
2 t 

x −1 
2 ln t are lin-

early independent). From (A.9) follows that 

d 2 ( ln �(x )) 

dx 2 
= 

(
�′ (x ) 

�(x ) 

)′ 
= 

�′′ (x ) 

�(x ) 
−

(
�′ (x ) 

)2 

( �(x ) ) 
2 

(A. 9) 
> 0 , 

which shows that digamma function increases. 

Now we show that f n ( q ) decreases on the interval [2 , + ∞ ) . To

obtain it is sufficient to consider ln ( f ( q )): 

ln ( f n (q )) 

= ln 

(
�( n 

2 
) √ 

π

)
+ ln 

(
�
(

q + 1 

2 

))
− ln 

(
�
(

q + n 

2 

))
− q 

2 

( ln (q − 1) − ln n ) , 
d( ln ( f n (q ))) 

dq 

= 

1 

2 

ψ 

(
q + 1 

2 

)
−1 

2 

ψ 

(
q + n 

2 

)
− 1 

2 

ln (q − 1) − q 

2(q − 1) 
+ 

1 

2 

ln n. 

We are going to show that d( ln ( f n (q ))) 
dq 

< 0 for q ≥ 2. Let k = � n 2 �
(the closest integer which is no greater than 

n 
2 ). Then ψ 

(
q + n 

2 

)
>

ψ 

(
k − 1 + 

q +1 
2 

)
and ln n � ln (2 k + 1) , whence 

d( ln ( f n (q ))) 

dq 

< 

1 

2 

(
ψ 

(
q + 1 

2 

)
− ψ 

(
k − 1 + 

q + 1 

2 

))
− 1 

2 
ln (q − 1) 

− q 

2(q − 1) 
+ 

1 

2 
ln (2 k + 1) 

(A. 8) = 

1 

2 

( 

ψ 

(
q + 1 

2 

)
−

k −1 ∑ 

i =1 

1 
q +1 

2 + k − i − 1 
− ψ 

(
q + 1 

2 

)) 

− q 

2(q − 1) 
+ 

1 

2 
ln 

(
2 k + 1 

q − 1 

)
①
� − 1 

2 

k −1 ∑ 

i =1 

2 

q − 1 + 2 k − 2 i 
− 1 

q − 1 
+ 

1 

2 
ln 

(
2 k + 1 

q − 1 

)
= − 1 

2 

(
2 

q − 1 
+ 

2 

q + 1 
+ 

2 

q + 3 
+ . . . + 

2 

q + 2 k − 3 

)
+ 

1 

2 
ln 

(
2 k + 1 

q − 1 

)
②
< − 1 

2 
ln 

(
q + 2 k − 1 

q − 1 

)
+ 

1 

2 
ln 

(
2 k + 1 

q − 1 

)
③
� − 1 

2 
ln 

(
2 k + 1 

q − 1 

)
+ 

1 

2 
ln 

(
2 k + 1 

q − 1 

)
= 0 , 

where ① and ③ is because q ≥ 2, ② is due to estimation of integral

of 1 
x by integral of g(x ) = 

1 
q −1+2 i 

, x ∈ [ q − 1 + 2 i, q − 1 + 2 i + 2] , i =
0 , 2 k − 1 which is no less than f ( x ): 

2 

q − 1 

+ 

2 

q + 1 

+ 

2 

q + 3 

+ . . . + 

2 

q + 2 k − 3 

> 

∫ q +2 k −1 

q −1 

1 

x 
dx = ln 

(
q + 2 k − 1 

q − 1 

)
. 

So, we shown that d( ln ( f n (q ))) 
dq 

< 0 for q ≥ 2 arbitrary natural

number n . Therefore for any fixed number n the function f n ( q )

decreases as q increase, which means that f n (q ) � f n (2) = 0 , i.e.,

(A.7) holds. From this and (A.4),(A.6) we obtain that ∀ q ≥ 2 

E [ || e || 2 q ] 
(A. 4) 
� ( n E [ | e 2 | q ] ) 2 q 

(A. 6)(A. 7) 
� (q − 1) n 

2 
q −1 

. (A.10)
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owever, inequality (A.10) is useless when q is big (with respect

o n ). Consider left hand side of (A.10) as function of q and find its

inimum for q ≥ 2. Consider h n (q ) = ln (q − 1) + 

(
2 
q − 1 

)
ln n (it is

ogarithm of the right hand side of (A.10) ). Derivative of h ( q ) is 

dh (q ) 

dq 
= 

1 

q − 1 

− 2 ln n 

q 2 
, 

1 

q − 1 

− 2 ln n 

q 2 

= 0 , q 2 − 2 q ln n + 2 ln n = 0 . 

f n ≥ 8, then the point where the function obtains its minimum

n the set [2 , + ∞ ) is q 0 = ln n 

(
1 + 

√ 

1 − 2 
ln n 

)
(for the case n ≤ 7 it

urns out that q 0 = 2 ; further without loss of generality we assume

 ≥ 8). Therefore for all q > q 0 it is more useful to use the following

stimation: 

 [ || e || 2 q ] 
①
< E [ || e || 2 q 0 

] 
(A. 10) 
� (q 0 − 1) n 

2 
q 0 

−1 ②� (2 ln n − 1) n 

2 
ln n 

−1 

= (2 ln n − 1) e 2 
1 

n 

� (16 ln n − 8) 
1 

n 

� (16 ln n − 8) n 

2 
q −1 

, (A.11)

here ① is due to ‖ e ‖ q < ‖ e ‖ q 0 for q > q 0 , ② follows from

 0 ≤ 2ln n , q 0 ≥ ln n . Putting estimations (A.10) and (A.11) together

e obtain (A.1) . 

Now we are going to prove (A.2) . Firstly, we want to estimate
 

E [ ‖ e ‖ 4 q ] . Due to probabilistic Jensen’s inequality ( q ≥ 2) 

 [ || e || 4 q ] = E 

⎡ ⎢ ⎣ 

⎛ ⎝ 

( 

n ∑ 

k =1 

| e k | q 
) 2 

⎞ ⎠ 

2 
q 

⎤ ⎥ ⎦ 

� 

⎛ ⎝ E 

⎡ ⎣ 

( 

n ∑ 

k =1 

| e k | q 
) 2 

⎤ ⎦ 

⎞ ⎠ 

2 
q 

①

� 

( 

E 

[ ( 

n 

n ∑ 

k =1 

| e k | 2 q 
) ] ) 

2 
q 

②= 

(
n 

2 
E [ | e 2 | 2 q ] 

) 2 
q 

(A. 6)(A. 7) 
� n 

4 
q 

( (
2 q − 1 

n 

) 2 q 
2 

) 

2 
q 

= (2 q − 1) 2 n 

4 
q −2 

, 

here ① is because 
(∑ n 

k =1 x k 
)2 � n 

∑ n 
k =1 x 

2 
k 

for x 1 , x 2 , . . . , x n ∈ R

nd ② follows from that mathematical expectation is linear and

omponents of the random vector e are identically distributed.

rom this we obtain 

 

E [ || e || 4 q ] � (2 q − 1) n 

2 
q −1 

. (A.12)

onsider the right hand side of the inequality (A.12) as a function

f q and find its minimum for q ≥ 2. Consider h n (q ) = ln (2 q − 1) +
2 
q − 1 

)
ln n (logarithm of the right hand side (A.12) ). Derivative of

 ( q ) is 

dh (q ) 

dq 
= 

2 

2 q − 1 

− 2 ln n 

q 2 
, 

2 

2 q − 1 

− 2 ln n 

q 2 

= 0 , q 2 − 2 q ln n + ln n = 0 . 

f n ≥ 3, the point where the function obtains its minimum on the

et [2 , + ∞ ) is q 0 = ln n 

(
1 + 

√ 

1 − 1 
ln n 

)
(for the case n ≤ 2 it turns

ut that q 0 = 2 ; further without loss of generality we assume that

 ≥ 3). Therefore for all q > q 0 : 
 

E [ || e || 4 q ] 
①
< 

√ 

E [ || e || 4 q 0 
] � (A. 12) (2 q 0 − 1) n 

2 
q 0 

−1 

②

� (4 ln n − 1) n 

2 
ln n 

−1 = (4 ln n − 1) e 2 
1 

n 

� (32 ln n − 8) 
1 

n 

� (32 ln n − 8) n 

2 
q −1 

, (A.13)

here ① is due to ‖ e ‖ q < ‖ e ‖ q 0 for q > q 0 , ② follows from

 0 ≤ 2ln n , q 0 ≥ ln n . Putting estimations (A.12) and (A.13) together

e get inequality 
 

E [ || e || 4 q ] � min { 2 q − 1 , 32 ln n − 8 } n 

2 
q −1 

. (A.14)
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Now we are going to find E [ 〈 s, e 〉 4 ] , where s ∈ R 

n is some vec-

or. Let S n ( r ) be a surface area of n -dimensional Euclidean sphere

ith radius r and d σ ( e ) be unnormalized uniform measure on n -

imensional Euclidean sphere. From this it follows that S n (r) =
 n (1) r n −1 , 

S n −1 (1) 

S n (1) 
= 

n −1 
n 
√ 

π

�( n +2 
2 

) 

�( n +1 
2 

) 
. Besides, let ϕ be the angle be-

ween s and e . Then 

 [ 〈 s, e 〉 4 ] = 

1 

S n (1) 

∫ 
S 

〈 s, e 〉 4 dσ (ϕ) 

= 

1 

S n (1) 

∫ π

0 

|| s || 4 2 cos 3 ϕ S n −1 ( sin ϕ ) dϕ 

= || s || 4 2 

S n −1 (1) 

S n (1) 

∫ π

0 

cos 4 ϕ sin 

n −2 ϕdϕ 

= || s || 4 2 ·
n − 1 

n 

√ 

π

�( n +2 
2 

) 

�( n +1 
2 

) 

∫ π

0 

cos 4 ϕ sin 

n −2 ϕ dϕ . (A.15) 

ompute the integral: ∫ π

0 

cos 4 ϕ sin 

n −2 ϕdϕ = 2 

∫ π
2 

0 

cos 4 ϕ sin 

n −2 ϕdϕ 

= /t = sin 

2 ϕ/ = 

∫ π
2 

0 

t 
n −3 

2 (1 − t) 
3 
2 dt = B 

(
n − 1 

2 

, 
5 

2 

)
= 

�( 5 
2 
)�( n −1 

2 
) 

�( n +4 
2 

) 
= 

3 
2 

· 1 
2 
�( 1 

2 
)�( n −1 

2 
) 

n +2 
2 

· �( n +2 
2 

) 

= 

3 

n + 2 

·
√ 

π�( n −1 
2 

) 

2�( n +2 
2 

) 
. 

rom this and (A.15) we obtain 

 [ 〈 s, e 〉 4 ] = || s || 4 2 ·
n − 1 

n 

√ 

π

�( n +2 
2 

) 

�( n +1 
2 

) 
· 3 

n + 2 

·
√ 

π�( n −1 
2 

) 

2�( n +2 
2 

) 

= || s || 4 2 ·
3(n − 1) 

2 n (n + 2) 
· �( n −1 

2 
) 

n −1 
2 

�( n −1 
2 

) 
= 

3 || s || 4 2 

n (n + 2) 

①

� 

3 || s || 4 2 

n 

2 
. (A.16) 

To prove (A.2) , it remains to use (A .14), (A .16) and Cauchy-

chwartz inequality ( (E [ X Y ]) 2 � E [ X 2 ] · E [ Y 2 ] ): 

 [ 〈 s, e 〉 2 || e || 2 q ] 
①

� 

√ 

E [ 〈 s, e 〉 4 ] · E [ || e || 4 q ] 

� 

√ 

3 || s || 2 2 min { 2 q − 1 , 32 ln n − 8 } n 

2 
q −2 

. 

ppendix B. Technical Results 

emma 12. Let a 0 , . . . , a N−1 , b, R 1 , . . . , R N−1 be non-negative num-

ers such that 

 l � 

√ 

2 ·

√ √ √ √ 

( 

l−1 ∑ 

k =0 

a k + b 

l−1 ∑ 

k =1 

αk +1 R k 

) 

l = 1 , . . . , N, (B.1)

here αk +1 = 

k +2 
96 n 2 ρn L 2 

for all k ∈ N . Then for l = 1 , . . . , N

l−1 
 

k =0 

a k + b 

l−1 ∑ 

k =1 

αk +1 R k � 

( 

√ 

l−1 ∑ 

k =0 

a k + 

√ 

2 b · l 2 

96 n 

2 ρn L 2 

) 2 

. (B.2)

roof. For l = 1 it is trivial inequality. Assume that (B.2) holds for

ome l < N and prove it for l + 1 . From the induction assumption

nd (B.1) we obtain 

 l � 

√ 

2 

( 

√ 

l−1 ∑ 

k =0 

a k + 

√ 

2 b · l 2 

96 n 

2 ρn L 2 

) 

, (B.3) 

hence 
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l ∑ 

k =0 

a k + b 

l ∑ 

k =1 

αk +1 R k = 

l−1 ∑ 

k =0 

a k + b 

l−1 ∑ 

k =1 

αk +1 R k + a l + bαl+1 R l 

①

� 

( 

√ 

l−1 ∑ 

k =0 

a k + 

√ 

2 b · l 2 

96 n 

2 ρn L 2 

) 2 

+ a l + 

√ 

2 bαl+1 

( 

√ 

l−1 ∑ 

k =0 

a k + 

√ 

2 b · l 2 

96 n 

2 ρn L 2 

) 

= 

l ∑ 

k =0 

a k + 2 

√ 

l−1 ∑ 

k =0 

a k ·
√ 

2 b 
l 2 

96 n 

2 ρn L 2 
+ 2 b 2 

l 4 

(96 n 

2 ρn L 2 ) 2 

+ 

√ 

2 bαl+1 

( 

√ 

l−1 ∑ 

k =0 

a k + 

√ 

2 b · l 2 

96 n 

2 ρn L 2 

) 

= 

l ∑ 

k =0 

a k + 2 

√ 

l−1 ∑ 

k =0 

a k ·
√ 

2 b 

(
l 2 

96 n 

2 ρn L 2 
+ 

αl+1 

2 

)
+ 2 b 2 

(
l 4 

(96 n 

2 ρn L 2 ) 2 
+ αl+1 ·

l 2 

96 n 

2 ρn L 2 

)
②

� 

l ∑ 

k =0 

a k + 2 

√ 

l ∑ 

k =0 

a k ·
√ 

2 b 
(l + 1) 2 

96 n 

2 ρn L 2 
+ 2 b 2 

(l + 1) 4 

(96 n 

2 ρn L 2 ) 2 

= 

( 

√ 

l ∑ 

k =0 

a k + 

√ 

2 b · (l + 1) 2 

96 n 

2 ρn L 2 

) 2 

, 

here ① follows from the induction assumption and (B.3) , ② is be-

ause 
∑ l−1 

k =0 
a k � 

∑ l 
k =0 a k and 

l 2 

96 n 

2 ρn L 2 
+ 

αl+1 

2 

= 

2 l 2 + l + 2 

192 n 

2 ρn L 2 
� 

(l + 1) 2 

96 n 

2 ρn L 2 
, 

l 4 

(96 n 

2 ρn L 2 ) 2 

+ αl+1 ·
l 2 

96 n 

2 ρn L 2 
� 

l 4 + (l + 2) l 2 

(96 n 

2 ρn L 2 ) 2 
� 

(l + 1) 4 

(96 n 

2 ρn L 2 ) 2 
. 

�

emma 13. Let a 0 , . . . , a N−1 , b, R 1 , . . . , R N−1 be non-negative num-

ers such that 

 l � 

√ 

2 ·

√ √ √ √ 

( 

l−1 ∑ 

k =0 

a k + bα
l−1 ∑ 

k =1 

R k 

) 

l = 1 , . . . , N. (B.4)

hen for l = 1 , . . . , N

l−1 
 

k =0 

a k + bα
l−1 ∑ 

k =1 

R k � 

( 

√ 

l−1 ∑ 

k =0 

a k + 

√ 

2 bαl 

) 2 

. (B.5)

roof. For l = 1 it is trivial inequality. Assume that (B.5) holds for

ome l < N and prove it for l + 1 . From the induction assumption

nd (B.4) we obtain 

 l � 

√ 

2 

( 

√ 

l−1 ∑ 

k =0 

a k + 

√ 

2 bαl 

) 

, (B.6) 

hence 

l ∑ 

k =0 

a k + bα
l ∑ 

k =1 

R k = 

l−1 ∑ 

k =0 

a k + bα
l−1 ∑ 

k =1 

R k + a l + bαR l 

①

� 

( 

√ 

l−1 ∑ 

k =0 

a k + 

√ 

2 bαl 

) 2 

+ a l + 

√ 

2 bα

( 

√ 

l−1 ∑ 

k =0 

a k + 

√ 

2 bαl 

) 
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Fig. C.3. Stepsize tuning for ARDD, RDD and RSGF applied to minimize Nesterov’s function (62) . We use _E and _NE to define � 2 and � 1 proximal setups respectively (see 

(8) and (9) for the details). Numbers in labels in upper right corners denote different choices of γ that are used. 

Fig. C.4. Stepsize tuning for ARDD, RDD and RSGF applied to minimize Nesterov’s function (62) . We use _E and _NE to define � 2 and � 1 proximal setups respectively (see 

(8) and (9) for the details). Number of oracle calls is divided by 10 7 . Numbers in labels in upper right corners denote different choices of γ that are used. 

l 

) 

 

A

 

a  

t  

w  

f  

s  

n  

u  

n

6 
= 

l ∑ 

k =0 

a k + 2 

√ 

l−1 ∑ 

k =0 

a k ·
√ 

2 bαl + 2 b 2 α2 l 2 + 

√ 

2 bα

( 

√ 

l−1 ∑ 

k =0 

a k + 

√ 

2 bα

= 

l ∑ 

k =0 

a k + 2 

√ 

l−1 ∑ 

k =0 

a k ·
√ 

2 bα
(

l + 

1 

2 

)
+ 2 b 2 α2 

(
l 2 + l 

)
②

� 

l ∑ 

k =0 

a k + 2 

√ 

l ∑ 

k =0 

a k ·
√ 

2 bα(l + 1) + 2 b 2 α2 (l + 1) 2 

= 

( 

√ 

l ∑ 

k =0 

a k + 

√ 

2 bα(l + 1) 

) 2 

, 

where ① follows from the induction assumption and (B.6) , ② is be-∑ l−1 ∑ l 
cause 
k =0 

a k � k =0 a k . �
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ppendix C. Parameters tuning 

In our analysis it is needed to choose αk +1 = 

k +2 
96 n 2 ρn L 2 

for ARDD

nd α = 

1 
48 nρn L 2 

. However, one can tune these parameters in order

o achieve better convergence rate in practice. In our experiments

e choose αk +1 = γ · k +2 
96 n 2 ρn L 2 

, α = γ · 1 
48 nρn L 2 

and tune numerical

actor γ . In Ghadimi and Lan (2013) authors prove convergence re-

ults for stepsize 6 α = 

1 √ 

n +4 
min 

{ 
1 

4 L 
√ 

n +4 
, 

˜ D 

σ
√ 

N 

} 
where ˜ D is some

umerical constant, therefore, in our experiments with RSGD we

se stepsizes α = γ · 1 √ 

n +4 
min 

{ 
1 

4 L 
√ 

n +4 
, 1 √ 

N 

} 
where we also tune

umerical factor γ . 
If σ = 0 , then one should ignore the second term in the minimum. 

nikov, An accelerated directional derivative method for smooth 

ch, https://doi.org/10.1016/j.ejor.2020.08.027 

https://doi.org/10.1016/j.ejor.2020.08.027


P. Dvurechensky, E. Gorbunov and A. Gasnikov / European Journal of Operational Research xxx (xxxx) xxx 19 

ARTICLE IN PRESS 

JID: EOR [m5G; September 4, 2020;11:53 ] 

Fig. C.5. Stepsize tuning for ARDD, RDD and RSGF applied to solve least squares problem (63) . We use _E and _NE to define � 2 and � 1 proximal setups respectively (see 

(8) and (9) for the details). For all methods batch size m equals 50. By oracle call we mean one computation of functional value of a summand. Number of oracle calls is 

divided by 10 8 . 

Table C.5 

The optimal choices of γ for ARDD, RDD and RSGF applied to mini- 

mize Nesterov’s function (62) for different dimension n . 

ARDD_E ARDD_NE RDD_E RDD_NE RSGF 

n = 100 32 2000 32 12000 10 

n = 10 0 0 32 2000 64 3000 4 

n = 50 0 0 32 1000 64 3000 10 
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.1. Nesterov’s function 

One can find our numerical results with tuning stepsizes for

ach method in Figs. C.3 –C.4 . 

Our tests with Nesterov’s function show that for this problem

RDD_E and RDD_ work better with γ ∈ [32, 64] and RSGF shows

he best performance with γ ∈ [4, 10]. Interestingly, ARDD and

DD with p = 1 require to choose γ significantly larger (of order

0 3 − 10 4 ) than for Euclidean methods in order to get competitive

r even better convergence rate. Moreover, ARDD_E, RDD_E and

SGF disconverge for γ ≥ 64, 200, 20 respectively. So, our empir-

cal observation is as follows: ARDD and RDD with non-Euclidean

roximal setup are able to converge with significantly larger step-

izes than its Euclidean counterpart. 

We summarize best options for γ that we use in the experi-

ents presented in Section 6 in Table C.5 . 

.2. Least squares problem 

In addition to the tuning of γ in ARDD we also tried different

ptions for L 2 : instead of L 2 from (64) we tried β · ‖ A ‖ F √ 

r 
with dif-

erent β . We tried β = 0 . 001 , 0 . 01 , 0 . 1 , 1 , 2 , 5 and 10, but the best

esults were obtained for β = 0 . 01 . One can find our numerical re-

ults with tuning γ in Fig. C.5 . 

Besides m = 50 we tried different batch sizes. In general, the

ehaviour of the considered methods was similar after proper pa-

ameters tuning. 
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